Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
import pytesseract
|
3 |
import cv2
|
4 |
import os
|
@@ -18,29 +18,30 @@ import cachetools
|
|
18 |
import hashlib
|
19 |
from vllm import LLM
|
20 |
|
21 |
-
app =
|
22 |
|
23 |
# Configure logging
|
24 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
# Set Tesseract path
|
28 |
-
pytesseract.
|
29 |
|
30 |
# Initialize BitNet model for CPU-only
|
31 |
try:
|
32 |
llm = LLM(
|
33 |
model="username/bitnet-finetuned-invoice", # Replace with your fine-tuned BitNet model
|
34 |
-
device="
|
35 |
-
enforce_eager=True, # Disable CUDA graph compilation
|
|
|
36 |
)
|
37 |
except Exception as e:
|
38 |
logger.error(f"Failed to load BitNet model: {str(e)}")
|
39 |
-
raise
|
40 |
|
41 |
-
# In-memory caches (
|
42 |
-
raw_text_cache = cachetools.
|
43 |
-
structured_data_cache = cachetools.
|
44 |
|
45 |
def log_memory_usage():
|
46 |
"""Log current memory usage."""
|
@@ -86,7 +87,7 @@ async def process_pdf_page(img, page_idx):
|
|
86 |
logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
|
87 |
return page_text + "\n"
|
88 |
except Exception as e:
|
89 |
-
logger.error(f"OCR failed for PDF page {
|
90 |
return ""
|
91 |
|
92 |
async def process_with_bitnet(filename: str, raw_text: str):
|
@@ -182,8 +183,8 @@ Output JSON:
|
|
182 |
}}
|
183 |
}}
|
184 |
"""
|
185 |
-
|
186 |
-
json_str =
|
187 |
json_start = json_str.find("{")
|
188 |
json_end = json_str.rfind("}") + 1
|
189 |
structured_data = json.loads(json_str[json_start:json_end])
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
import pytesseract
|
3 |
import cv2
|
4 |
import os
|
|
|
18 |
import hashlib
|
19 |
from vllm import LLM
|
20 |
|
21 |
+
app = FastAPI()
|
22 |
|
23 |
# Configure logging
|
24 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
# Set Tesseract path
|
28 |
+
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
29 |
|
30 |
# Initialize BitNet model for CPU-only
|
31 |
try:
|
32 |
llm = LLM(
|
33 |
model="username/bitnet-finetuned-invoice", # Replace with your fine-tuned BitNet model
|
34 |
+
device="cpu",
|
35 |
+
enforce_eager=True, # Disable CUDA graph compilation
|
36 |
+
max_model_len=2048, # Adjust based on memory (16GB RAM)
|
37 |
)
|
38 |
except Exception as e:
|
39 |
logger.error(f"Failed to load BitNet model: {str(e)}")
|
40 |
+
raise HTTPException(status_code=500, detail="BitNet model initialization failed")
|
41 |
|
42 |
+
# In-memory caches (1-hour TTL)
|
43 |
+
raw_text_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
|
44 |
+
structured_data_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
|
45 |
|
46 |
def log_memory_usage():
|
47 |
"""Log current memory usage."""
|
|
|
87 |
logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
|
88 |
return page_text + "\n"
|
89 |
except Exception as e:
|
90 |
+
logger.error(f"OCR failed for PDF page {idx}: {str(e)}, {log_memory_usage()}")
|
91 |
return ""
|
92 |
|
93 |
async def process_with_bitnet(filename: str, raw_text: str):
|
|
|
183 |
}}
|
184 |
}}
|
185 |
"""
|
186 |
+
outputs = llm.generate(prompts=[prompt])
|
187 |
+
json_str = outputs[0].outputs[0].text
|
188 |
json_start = json_str.find("{")
|
189 |
json_end = json_str.rfind("}") + 1
|
190 |
structured_data = json.loads(json_str[json_start:json_end])
|