Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
import pytesseract
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import json
|
7 |
+
import unicodedata
|
8 |
+
from pdf2image import convert_from_bytes
|
9 |
+
from pypdf import PdfReader
|
10 |
+
import numpy as np
|
11 |
+
from typing import List
|
12 |
+
import io
|
13 |
+
import logging
|
14 |
+
import time
|
15 |
+
import asyncio
|
16 |
+
import psutil
|
17 |
+
import cachetools
|
18 |
+
import hashlib
|
19 |
+
from vllm import LLM
|
20 |
+
|
21 |
+
app = FastAPI()
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
# Set Tesseract path
|
28 |
+
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
29 |
+
|
30 |
+
# Initialize BitNet model
|
31 |
+
try:
|
32 |
+
llm = LLM(model="bitnet/BitNet-b1.2-3B", gpu_memory_utilization=0.0) # CPU-only
|
33 |
+
except Exception as e:
|
34 |
+
logger.error(f"Failed to load BitNet model: {str(e)}")
|
35 |
+
raise HTTPException(status_code=500, detail="BitNet model initialization failed")
|
36 |
+
|
37 |
+
# In-memory caches (1-hour TTL)
|
38 |
+
raw_text_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
|
39 |
+
structured_data_cache = cachetools.TTLCache(maxsize=100, ttl=3600)
|
40 |
+
|
41 |
+
def log_memory_usage():
|
42 |
+
"""Log current memory usage."""
|
43 |
+
process = psutil.Process()
|
44 |
+
mem_info = process.memory_info()
|
45 |
+
return f"Memory usage: {mem_info.rss / 1024 / 1024:.2f} MB"
|
46 |
+
|
47 |
+
def get_file_hash(file_bytes):
|
48 |
+
"""Generate MD5 hash of file content."""
|
49 |
+
return hashlib.md5(file_bytes).hexdigest()
|
50 |
+
|
51 |
+
def get_text_hash(raw_text):
|
52 |
+
"""Generate MD5 hash of raw text."""
|
53 |
+
return hashlib.md5(raw_text.encode('utf-8')).hexdigest()
|
54 |
+
|
55 |
+
async def process_image(img_bytes, filename, idx):
|
56 |
+
"""Process a single image (JPG/JPEG/PNG) with OCR."""
|
57 |
+
start_time = time.time()
|
58 |
+
logger.info(f"Starting OCR for {filename} image {idx}, {log_memory_usage()}")
|
59 |
+
try:
|
60 |
+
img = Image.open(io.BytesIO(img_bytes))
|
61 |
+
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
62 |
+
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
|
63 |
+
img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
|
64 |
+
custom_config = r'--oem 1 --psm 6 -l eng+ara'
|
65 |
+
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
|
66 |
+
logger.info(f"Completed OCR for {filename} image {idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
|
67 |
+
return page_text + "\n"
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"OCR failed for {filename} image {idx}: {str(e)}, {log_memory_usage()}")
|
70 |
+
return ""
|
71 |
+
|
72 |
+
async def process_pdf_page(img, page_idx):
|
73 |
+
"""Process a single PDF page with OCR."""
|
74 |
+
start_time = time.time()
|
75 |
+
logger.info(f"Starting OCR for PDF page {page_idx}, {log_memory_usage()}")
|
76 |
+
try:
|
77 |
+
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
78 |
+
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
|
79 |
+
img_pil = Image.fromarray(cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB))
|
80 |
+
custom_config = r'--oem 1 --psm 6 -l eng+ara'
|
81 |
+
page_text = pytesseract.image_to_string(img_pil, config=custom_config)
|
82 |
+
logger.info(f"Completed OCR for PDF page {page_idx}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
|
83 |
+
return page_text + "\n"
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"OCR failed for PDF page {page_idx}: {str(e)}, {log_memory_usage()}")
|
86 |
+
return ""
|
87 |
+
|
88 |
+
async def process_with_bitnet(filename: str, raw_text: str):
|
89 |
+
"""Process raw text with BitNet to extract structured data."""
|
90 |
+
start_time = time.time()
|
91 |
+
logger.info(f"Starting BitNet processing for {filename}, {log_memory_usage()}")
|
92 |
+
|
93 |
+
# Check structured data cache
|
94 |
+
text_hash = get_text_hash(raw_text)
|
95 |
+
if text_hash in structured_data_cache:
|
96 |
+
logger.info(f"Structured data cache hit for {filename}, {log_memory_usage()}")
|
97 |
+
return structured_data_cache[text_hash]
|
98 |
+
|
99 |
+
# Truncate text for BitNet
|
100 |
+
if len(raw_text) > 10000:
|
101 |
+
raw_text = raw_text[:10000]
|
102 |
+
logger.info(f"Truncated raw text for {filename} to 10000 characters, {log_memory_usage()}")
|
103 |
+
|
104 |
+
try:
|
105 |
+
prompt = f"""You are an intelligent invoice data extractor. Given raw text from an invoice (in English or other languages),
|
106 |
+
extract key business fields into the specified JSON format. Return each field with an estimated accuracy score between 0 and 1.
|
107 |
+
|
108 |
+
- Accuracy reflects confidence in the correctness of each field.
|
109 |
+
- Handle synonyms (e.g., 'total' = 'net', 'tax' = 'GST'/'TDS').
|
110 |
+
- Detect currency from symbols ($, ₹, €) or keywords (USD, INR, EUR); default to USD if unclear.
|
111 |
+
- The 'items' list may have multiple entries, each with detailed attributes.
|
112 |
+
- If a field is missing, return an empty value (`""` or `0`) and set `accuracy` to `0.0`.
|
113 |
+
- Convert any date to YYYY-MM-DD.
|
114 |
+
|
115 |
+
Raw text:
|
116 |
+
{raw_text}
|
117 |
+
|
118 |
+
Output JSON:
|
119 |
+
{{
|
120 |
+
"invoice": {{
|
121 |
+
"invoice_number": {{"value": "", "accuracy": 0.0}},
|
122 |
+
"invoice_date": {{"value": "", "accuracy": 0.0}},
|
123 |
+
"due_date": {{"value": "", "accuracy": 0.0}},
|
124 |
+
"purchase_order_number": {{"value": "", "accuracy": 0.0}},
|
125 |
+
"vendor": {{
|
126 |
+
"vendor_id": {{"value": "", "accuracy": 0.0}},
|
127 |
+
"name": {{"value": "", "accuracy": 0.0}},
|
128 |
+
"address": {{
|
129 |
+
"line1": {{"value": "", "accuracy": 0.0}},
|
130 |
+
"line2": {{"value": "", "accuracy": 0.0}},
|
131 |
+
"city": {{"value": "", "accuracy": 0.0}},
|
132 |
+
"state": {{"value": "", "accuracy": 0.0}},
|
133 |
+
"postal_code": {{"value": "", "accuracy": 0.0}},
|
134 |
+
"country": {{"value": "", "accuracy": 0.0}}
|
135 |
+
}},
|
136 |
+
"contact": {{
|
137 |
+
"email": {{"value": "", "accuracy": 0.0}},
|
138 |
+
"phone": {{"value": "", "accuracy": 0.0}}
|
139 |
+
}},
|
140 |
+
"tax_id": {{"value": "", "accuracy": 0.0}}
|
141 |
+
}},
|
142 |
+
"buyer": {{
|
143 |
+
"buyer_id": {{"value": "", "accuracy": 0.0}},
|
144 |
+
"name": {{"value": "", "accuracy": 0.0}},
|
145 |
+
"address": {{
|
146 |
+
"line1": {{"value": "", "accuracy": 0.0}},
|
147 |
+
"line2": {{"value": "", "accuracy": 0.0}},
|
148 |
+
"city": {{"value": "", "accuracy": 0.0}},
|
149 |
+
"state": {{"value": "", "accuracy": 0.0}},
|
150 |
+
"postal_code": {{"value": "", "accuracy": 0.0}},
|
151 |
+
"country": {{"value": "", "accuracy": 0.0}}
|
152 |
+
}},
|
153 |
+
"contact": {{
|
154 |
+
"email": {{"value": "", "accuracy": 0.0}},
|
155 |
+
"phone": {{"value": "", "accuracy": 0.0}}
|
156 |
+
}},
|
157 |
+
"tax_id": {{"value": "", "accuracy": 0.0}}
|
158 |
+
}},
|
159 |
+
"items": [
|
160 |
+
{{
|
161 |
+
"item_id": {{"value": "", "accuracy": 0.0}},
|
162 |
+
"description": {{"value": "", "accuracy": 0.0}},
|
163 |
+
"quantity": {{"value": 0, "accuracy": 0.0}},
|
164 |
+
"unit_of_measure": {{"value": "", "accuracy": 0.0}},
|
165 |
+
"unit_price": {{"value": 0, "accuracy": 0.0}},
|
166 |
+
"total_price": {{"value": 0, "accuracy": 0.0}},
|
167 |
+
"tax_rate": {{"value": 0, "accuracy": 0.0}},
|
168 |
+
"tax_amount": {{"value": 0, "accuracy": 0.0}},
|
169 |
+
"discount": {{"value": 0, "accuracy": 0.0}},
|
170 |
+
"net_amount": {{"value": 0, "accuracy": 0.0}}
|
171 |
+
}}
|
172 |
+
],
|
173 |
+
"sub_total": {{"value": 0, "accuracy": 0.0}},
|
174 |
+
"tax_total": {{"value": 0, "accuracy": 0.0}},
|
175 |
+
"discount_total": {{"value": 0, "accuracy": 0.0}},
|
176 |
+
"total_amount": {{"value": 0, "accuracy": 0.0}},
|
177 |
+
"currency": {{"value": "", "accuracy": 0.0}}
|
178 |
+
}}
|
179 |
+
}}
|
180 |
+
"""
|
181 |
+
output = llm.generate([{"role": "user", "content": prompt}])
|
182 |
+
json_str = output[0].text
|
183 |
+
json_start = json_str.find("{")
|
184 |
+
json_end = json_str.rfind("}") + 1
|
185 |
+
structured_data = json.loads(json_str[json_start:json_end])
|
186 |
+
structured_data_cache[text_hash] = structured_data
|
187 |
+
logger.info(f"BitNet processing for {filename}, took {time.time() - start_time:.2f} seconds, {log_memory_usage()}")
|
188 |
+
return structured_data
|
189 |
+
except Exception as e:
|
190 |
+
logger.error(f"BitNet processing failed for {filename}: {str(e)}, {log_memory_usage()}")
|
191 |
+
return {"error": f"BitNet processing failed: {str(e)}"}
|
192 |
+
|
193 |
+
@app.post("/ocr")
|
194 |
+
async def extract_and_structure(files: List[UploadFile] = File(...)):
|
195 |
+
output_json = {
|
196 |
+
"success": True,
|
197 |
+
"message": "",
|
198 |
+
"data": []
|
199 |
+
}
|
200 |
+
success_count = 0
|
201 |
+
fail_count = 0
|
202 |
+
|
203 |
+
logger.info(f"Starting processing for {len(files)} files, {log_memory_usage()}")
|
204 |
+
|
205 |
+
for file in files:
|
206 |
+
total_start_time = time.time()
|
207 |
+
logger.info(f"Processing file: {file.filename}, {log_memory_usage()}")
|
208 |
+
|
209 |
+
# Validate file format
|
210 |
+
valid_extensions = {'.pdf', '.jpg', '.jpeg', '.png'}
|
211 |
+
file_ext = os.path.splitext(file.filename.lower())[1]
|
212 |
+
if file_ext not in valid_extensions:
|
213 |
+
fail_count += 1
|
214 |
+
output_json["data"].append({
|
215 |
+
"filename": file.filename,
|
216 |
+
"structured_data": {"error": f"Unsupported file format: {file_ext}"},
|
217 |
+
"error": f"Unsupported file format: {file_ext}"
|
218 |
+
})
|
219 |
+
logger.error(f"Unsupported file format for {file.filename}: {file_ext}")
|
220 |
+
continue
|
221 |
+
|
222 |
+
# Read file into memory
|
223 |
+
try:
|
224 |
+
file_start_time = time.time()
|
225 |
+
file_bytes = await file.read()
|
226 |
+
file_stream = io.BytesIO(file_bytes)
|
227 |
+
file_hash = get_file_hash(file_bytes)
|
228 |
+
logger.info(f"Read file {file.filename}, took {time.time() - file_start_time:.2f} seconds, size: {len(file_bytes)/1024:.2f} KB, {log_memory_usage()}")
|
229 |
+
except Exception as e:
|
230 |
+
fail_count += 1
|
231 |
+
output_json["data"].append({
|
232 |
+
"filename": file.filename,
|
233 |
+
"structured_data": {"error": f"Failed to read file: {str(e)}"},
|
234 |
+
"error": f"Failed to read file: {str(e)}"
|
235 |
+
})
|
236 |
+
logger.error(f"Failed to read file {file.filename}: {str(e)}, {log_memory_usage()}")
|
237 |
+
continue
|
238 |
+
|
239 |
+
# Check raw text cache
|
240 |
+
raw_text = ""
|
241 |
+
if file_hash in raw_text_cache:
|
242 |
+
raw_text = raw_text_cache[file_hash]
|
243 |
+
logger.info(f"Raw text cache hit for {file.filename}, {log_memory_usage()}")
|
244 |
+
else:
|
245 |
+
if file_ext == '.pdf':
|
246 |
+
# Try extracting embedded text
|
247 |
+
try:
|
248 |
+
extract_start_time = time.time()
|
249 |
+
reader = PdfReader(file_stream)
|
250 |
+
for page in reader.pages:
|
251 |
+
text = page.extract_text()
|
252 |
+
if text:
|
253 |
+
raw_text += text + "\n"
|
254 |
+
logger.info(f"Embedded text extraction for {file.filename}, took {time.time() - extract_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
|
255 |
+
except Exception as e:
|
256 |
+
logger.warning(f"Embedded text extraction failed for {file.filename}: {str(e)}, {log_memory_usage()}")
|
257 |
+
|
258 |
+
# If no embedded text, perform OCR
|
259 |
+
if not raw_text.strip():
|
260 |
+
try:
|
261 |
+
convert_start_time = time.time()
|
262 |
+
images = convert_from_bytes(file_bytes, poppler_path="/usr/local/bin", dpi=100)
|
263 |
+
logger.info(f"PDF to images conversion for {file.filename}, {len(images)} pages, took {time.time() - convert_start_time:.2f} seconds, {log_memory_usage()}")
|
264 |
+
|
265 |
+
ocr_start_time = time.time()
|
266 |
+
page_texts = []
|
267 |
+
for i, img in enumerate(images):
|
268 |
+
page_text = await process_pdf_page(img, i)
|
269 |
+
page_texts.append(page_text)
|
270 |
+
raw_text = "".join(page_texts)
|
271 |
+
logger.info(f"Total OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
|
272 |
+
except Exception as e:
|
273 |
+
fail_count += 1
|
274 |
+
output_json["data"].append({
|
275 |
+
"filename": file.filename,
|
276 |
+
"structured_data": {"error": f"OCR failed: {str(e)}"},
|
277 |
+
"error": f"OCR failed: {str(e)}"
|
278 |
+
})
|
279 |
+
logger.error(f"OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
|
280 |
+
continue
|
281 |
+
else: # JPG/JPEG/PNG
|
282 |
+
try:
|
283 |
+
ocr_start_time = time.time()
|
284 |
+
raw_text = await process_image(file_bytes, file.filename, 0)
|
285 |
+
logger.info(f"Image OCR for {file.filename}, took {time.time() - ocr_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
|
286 |
+
except Exception as e:
|
287 |
+
fail_count += 1
|
288 |
+
output_json["data"].append({
|
289 |
+
"filename": file.filename,
|
290 |
+
"structured_data": {"error": f"Image OCR failed: {str(e)}"},
|
291 |
+
"error": f"Image OCR failed: {str(e)}"
|
292 |
+
})
|
293 |
+
logger.error(f"Image OCR failed for {file.filename}: {str(e)}, {log_memory_usage()}")
|
294 |
+
continue
|
295 |
+
|
296 |
+
# Normalize text
|
297 |
+
try:
|
298 |
+
normalize_start_time = time.time()
|
299 |
+
raw_text = unicodedata.normalize('NFKC', raw_text)
|
300 |
+
raw_text = raw_text.encode().decode('utf-8')
|
301 |
+
raw_text_cache[file_hash] = raw_text
|
302 |
+
logger.info(f"Text normalization for {file.filename}, took {time.time() - normalize_start_time:.2f} seconds, text length: {len(raw_text)}, {log_memory_usage()}")
|
303 |
+
except Exception as e:
|
304 |
+
logger.warning(f"Text normalization failed for {file.filename}: {str(e)}, {log_memory_usage()}")
|
305 |
+
|
306 |
+
# Process with BitNet
|
307 |
+
structured_data = await process_with_bitnet(file.filename, raw_text)
|
308 |
+
success_count += 1
|
309 |
+
output_json["data"].append({
|
310 |
+
"filename": file.filename,
|
311 |
+
"structured_data": structured_data,
|
312 |
+
"error": ""
|
313 |
+
})
|
314 |
+
|
315 |
+
logger.info(f"Total processing for {file.filename}, took {time.time() - total_start_time:.2f} seconds, {log_memory_usage()}")
|
316 |
+
|
317 |
+
output_json["message"] = f"Processed {len(files)} files. {success_count} succeeded, {fail_count} failed."
|
318 |
+
if fail_count > 0 and success_count == 0:
|
319 |
+
output_json["success"] = False
|
320 |
+
|
321 |
+
logger.info(f"Completed processing for {len(files)} files, {success_count} succeeded, {fail_count} failed, {log_memory_usage()}")
|
322 |
+
return output_json
|