Spaces:
Sleeping
Sleeping
Chizoba Obasi
commited on
Commit
·
4d4c21b
1
Parent(s):
8b093fc
clean up output format of classifier
Browse files- .ipynb_checkpoints/app-checkpoint.ipynb +55 -32
- app.ipynb +55 -32
- app.py +5 -3
.ipynb_checkpoints/app-checkpoint.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "49f8a125",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"id": "71c3904e",
|
| 17 |
"metadata": {},
|
| 18 |
"outputs": [
|
|
@@ -22,7 +22,7 @@
|
|
| 22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
| 23 |
]
|
| 24 |
},
|
| 25 |
-
"execution_count":
|
| 26 |
"metadata": {},
|
| 27 |
"output_type": "execute_result"
|
| 28 |
}
|
|
@@ -42,7 +42,7 @@
|
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
-
"execution_count":
|
| 46 |
"id": "41471e63",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
@@ -57,7 +57,7 @@
|
|
| 57 |
},
|
| 58 |
{
|
| 59 |
"cell_type": "code",
|
| 60 |
-
"execution_count":
|
| 61 |
"id": "f2e432ef",
|
| 62 |
"metadata": {},
|
| 63 |
"outputs": [
|
|
@@ -68,7 +68,7 @@
|
|
| 68 |
"PILImage mode=RGB size=192x192"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
-
"execution_count":
|
| 72 |
"metadata": {},
|
| 73 |
"output_type": "execute_result"
|
| 74 |
}
|
|
@@ -81,7 +81,7 @@
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"cell_type": "code",
|
| 84 |
-
"execution_count":
|
| 85 |
"id": "20cf1910",
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
|
@@ -92,7 +92,29 @@
|
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"cell_type": "code",
|
| 95 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"id": "91133a4e",
|
| 97 |
"metadata": {},
|
| 98 |
"outputs": [
|
|
@@ -100,8 +122,8 @@
|
|
| 100 |
"name": "stdout",
|
| 101 |
"output_type": "stream",
|
| 102 |
"text": [
|
| 103 |
-
"CPU times: user 3 µs, sys:
|
| 104 |
-
"Wall time:
|
| 105 |
]
|
| 106 |
},
|
| 107 |
{
|
|
@@ -147,7 +169,7 @@
|
|
| 147 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
| 148 |
]
|
| 149 |
},
|
| 150 |
-
"execution_count":
|
| 151 |
"metadata": {},
|
| 152 |
"output_type": "execute_result"
|
| 153 |
}
|
|
@@ -159,7 +181,7 @@
|
|
| 159 |
},
|
| 160 |
{
|
| 161 |
"cell_type": "code",
|
| 162 |
-
"execution_count":
|
| 163 |
"id": "fbfb35f2",
|
| 164 |
"metadata": {},
|
| 165 |
"outputs": [],
|
|
@@ -169,12 +191,13 @@
|
|
| 169 |
"\n",
|
| 170 |
"def classify_image(img):\n",
|
| 171 |
" pred, idx, probs = learn.predict(img)\n",
|
| 172 |
-
" return dict(zip(categories, map(float, probs)))"
|
|
|
|
| 173 |
]
|
| 174 |
},
|
| 175 |
{
|
| 176 |
"cell_type": "code",
|
| 177 |
-
"execution_count":
|
| 178 |
"id": "607bdfc9",
|
| 179 |
"metadata": {},
|
| 180 |
"outputs": [
|
|
@@ -221,7 +244,7 @@
|
|
| 221 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
| 222 |
]
|
| 223 |
},
|
| 224 |
-
"execution_count":
|
| 225 |
"metadata": {},
|
| 226 |
"output_type": "execute_result"
|
| 227 |
}
|
|
@@ -232,7 +255,7 @@
|
|
| 232 |
},
|
| 233 |
{
|
| 234 |
"cell_type": "code",
|
| 235 |
-
"execution_count":
|
| 236 |
"id": "abd33e96",
|
| 237 |
"metadata": {},
|
| 238 |
"outputs": [
|
|
@@ -252,7 +275,7 @@
|
|
| 252 |
"text": [
|
| 253 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
| 254 |
"--------\n",
|
| 255 |
-
"Running on local URL: http://127.0.0.1:
|
| 256 |
"\n",
|
| 257 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 258 |
]
|
|
@@ -261,7 +284,7 @@
|
|
| 261 |
"data": {
|
| 262 |
"text/plain": []
|
| 263 |
},
|
| 264 |
-
"execution_count":
|
| 265 |
"metadata": {},
|
| 266 |
"output_type": "execute_result"
|
| 267 |
}
|
|
@@ -270,7 +293,7 @@
|
|
| 270 |
"#|export\n",
|
| 271 |
"# image = gr.Image(shape=(192, 192))\n",
|
| 272 |
"image = gr.Image(width=192, height=192)\n",
|
| 273 |
-
"label = gr.Label()\n",
|
| 274 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
| 275 |
"\n",
|
| 276 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
@@ -279,7 +302,7 @@
|
|
| 279 |
},
|
| 280 |
{
|
| 281 |
"cell_type": "code",
|
| 282 |
-
"execution_count":
|
| 283 |
"id": "f0d25829",
|
| 284 |
"metadata": {},
|
| 285 |
"outputs": [],
|
|
@@ -289,7 +312,7 @@
|
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"cell_type": "code",
|
| 292 |
-
"execution_count":
|
| 293 |
"id": "c75b8ca4",
|
| 294 |
"metadata": {},
|
| 295 |
"outputs": [],
|
|
@@ -299,7 +322,7 @@
|
|
| 299 |
},
|
| 300 |
{
|
| 301 |
"cell_type": "code",
|
| 302 |
-
"execution_count":
|
| 303 |
"id": "a1bd98e0",
|
| 304 |
"metadata": {},
|
| 305 |
"outputs": [
|
|
@@ -323,7 +346,7 @@
|
|
| 323 |
" requires_grad=True)"
|
| 324 |
]
|
| 325 |
},
|
| 326 |
-
"execution_count":
|
| 327 |
"metadata": {},
|
| 328 |
"output_type": "execute_result"
|
| 329 |
}
|
|
@@ -334,7 +357,7 @@
|
|
| 334 |
},
|
| 335 |
{
|
| 336 |
"cell_type": "code",
|
| 337 |
-
"execution_count":
|
| 338 |
"id": "9a09b2fd",
|
| 339 |
"metadata": {},
|
| 340 |
"outputs": [
|
|
@@ -344,7 +367,7 @@
|
|
| 344 |
"torch.Size([64, 3, 7, 7])"
|
| 345 |
]
|
| 346 |
},
|
| 347 |
-
"execution_count":
|
| 348 |
"metadata": {},
|
| 349 |
"output_type": "execute_result"
|
| 350 |
}
|
|
@@ -355,7 +378,7 @@
|
|
| 355 |
},
|
| 356 |
{
|
| 357 |
"cell_type": "code",
|
| 358 |
-
"execution_count":
|
| 359 |
"id": "a05ca56d",
|
| 360 |
"metadata": {},
|
| 361 |
"outputs": [
|
|
@@ -624,7 +647,7 @@
|
|
| 624 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
| 625 |
]
|
| 626 |
},
|
| 627 |
-
"execution_count":
|
| 628 |
"metadata": {},
|
| 629 |
"output_type": "execute_result"
|
| 630 |
}
|
|
@@ -643,7 +666,7 @@
|
|
| 643 |
},
|
| 644 |
{
|
| 645 |
"cell_type": "code",
|
| 646 |
-
"execution_count":
|
| 647 |
"id": "416da297",
|
| 648 |
"metadata": {},
|
| 649 |
"outputs": [],
|
|
@@ -656,7 +679,7 @@
|
|
| 656 |
},
|
| 657 |
{
|
| 658 |
"cell_type": "code",
|
| 659 |
-
"execution_count":
|
| 660 |
"id": "a0d2f5c6",
|
| 661 |
"metadata": {},
|
| 662 |
"outputs": [],
|
|
@@ -667,7 +690,7 @@
|
|
| 667 |
},
|
| 668 |
{
|
| 669 |
"cell_type": "code",
|
| 670 |
-
"execution_count":
|
| 671 |
"id": "4d5c5a92",
|
| 672 |
"metadata": {},
|
| 673 |
"outputs": [],
|
|
@@ -678,7 +701,7 @@
|
|
| 678 |
},
|
| 679 |
{
|
| 680 |
"cell_type": "code",
|
| 681 |
-
"execution_count":
|
| 682 |
"id": "3debd079",
|
| 683 |
"metadata": {},
|
| 684 |
"outputs": [],
|
|
@@ -691,7 +714,7 @@
|
|
| 691 |
{
|
| 692 |
"cell_type": "code",
|
| 693 |
"execution_count": null,
|
| 694 |
-
"id": "
|
| 695 |
"metadata": {},
|
| 696 |
"outputs": [],
|
| 697 |
"source": []
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
"id": "49f8a125",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
+
"execution_count": 3,
|
| 16 |
"id": "71c3904e",
|
| 17 |
"metadata": {},
|
| 18 |
"outputs": [
|
|
|
|
| 22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
| 23 |
]
|
| 24 |
},
|
| 25 |
+
"execution_count": 3,
|
| 26 |
"metadata": {},
|
| 27 |
"output_type": "execute_result"
|
| 28 |
}
|
|
|
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
+
"execution_count": 4,
|
| 46 |
"id": "41471e63",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
|
|
| 57 |
},
|
| 58 |
{
|
| 59 |
"cell_type": "code",
|
| 60 |
+
"execution_count": 5,
|
| 61 |
"id": "f2e432ef",
|
| 62 |
"metadata": {},
|
| 63 |
"outputs": [
|
|
|
|
| 68 |
"PILImage mode=RGB size=192x192"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
+
"execution_count": 5,
|
| 72 |
"metadata": {},
|
| 73 |
"output_type": "execute_result"
|
| 74 |
}
|
|
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"cell_type": "code",
|
| 84 |
+
"execution_count": 6,
|
| 85 |
"id": "20cf1910",
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
|
|
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"cell_type": "code",
|
| 95 |
+
"execution_count": 10,
|
| 96 |
+
"id": "7e80fd71",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [
|
| 99 |
+
{
|
| 100 |
+
"data": {
|
| 101 |
+
"text/plain": [
|
| 102 |
+
"[False, True]"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
"execution_count": 10,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"output_type": "execute_result"
|
| 108 |
+
}
|
| 109 |
+
],
|
| 110 |
+
"source": [
|
| 111 |
+
"LABELS = learn.dls.vocab\n",
|
| 112 |
+
"LABELS"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": 11,
|
| 118 |
"id": "91133a4e",
|
| 119 |
"metadata": {},
|
| 120 |
"outputs": [
|
|
|
|
| 122 |
"name": "stdout",
|
| 123 |
"output_type": "stream",
|
| 124 |
"text": [
|
| 125 |
+
"CPU times: user 3 µs, sys: 1e+03 ns, total: 4 µs\n",
|
| 126 |
+
"Wall time: 4.77 µs\n"
|
| 127 |
]
|
| 128 |
},
|
| 129 |
{
|
|
|
|
| 169 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
| 170 |
]
|
| 171 |
},
|
| 172 |
+
"execution_count": 11,
|
| 173 |
"metadata": {},
|
| 174 |
"output_type": "execute_result"
|
| 175 |
}
|
|
|
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"cell_type": "code",
|
| 184 |
+
"execution_count": 16,
|
| 185 |
"id": "fbfb35f2",
|
| 186 |
"metadata": {},
|
| 187 |
"outputs": [],
|
|
|
|
| 191 |
"\n",
|
| 192 |
"def classify_image(img):\n",
|
| 193 |
" pred, idx, probs = learn.predict(img)\n",
|
| 194 |
+
" return dict(zip(categories, map(float, probs)))\n",
|
| 195 |
+
"# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}"
|
| 196 |
]
|
| 197 |
},
|
| 198 |
{
|
| 199 |
"cell_type": "code",
|
| 200 |
+
"execution_count": 17,
|
| 201 |
"id": "607bdfc9",
|
| 202 |
"metadata": {},
|
| 203 |
"outputs": [
|
|
|
|
| 244 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
| 245 |
]
|
| 246 |
},
|
| 247 |
+
"execution_count": 17,
|
| 248 |
"metadata": {},
|
| 249 |
"output_type": "execute_result"
|
| 250 |
}
|
|
|
|
| 255 |
},
|
| 256 |
{
|
| 257 |
"cell_type": "code",
|
| 258 |
+
"execution_count": 19,
|
| 259 |
"id": "abd33e96",
|
| 260 |
"metadata": {},
|
| 261 |
"outputs": [
|
|
|
|
| 275 |
"text": [
|
| 276 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
| 277 |
"--------\n",
|
| 278 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
| 279 |
"\n",
|
| 280 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 281 |
]
|
|
|
|
| 284 |
"data": {
|
| 285 |
"text/plain": []
|
| 286 |
},
|
| 287 |
+
"execution_count": 19,
|
| 288 |
"metadata": {},
|
| 289 |
"output_type": "execute_result"
|
| 290 |
}
|
|
|
|
| 293 |
"#|export\n",
|
| 294 |
"# image = gr.Image(shape=(192, 192))\n",
|
| 295 |
"image = gr.Image(width=192, height=192)\n",
|
| 296 |
+
"label = gr.Label(num_top_classes=2)\n",
|
| 297 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
| 298 |
"\n",
|
| 299 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
|
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"cell_type": "code",
|
| 305 |
+
"execution_count": 20,
|
| 306 |
"id": "f0d25829",
|
| 307 |
"metadata": {},
|
| 308 |
"outputs": [],
|
|
|
|
| 312 |
},
|
| 313 |
{
|
| 314 |
"cell_type": "code",
|
| 315 |
+
"execution_count": 21,
|
| 316 |
"id": "c75b8ca4",
|
| 317 |
"metadata": {},
|
| 318 |
"outputs": [],
|
|
|
|
| 322 |
},
|
| 323 |
{
|
| 324 |
"cell_type": "code",
|
| 325 |
+
"execution_count": 22,
|
| 326 |
"id": "a1bd98e0",
|
| 327 |
"metadata": {},
|
| 328 |
"outputs": [
|
|
|
|
| 346 |
" requires_grad=True)"
|
| 347 |
]
|
| 348 |
},
|
| 349 |
+
"execution_count": 22,
|
| 350 |
"metadata": {},
|
| 351 |
"output_type": "execute_result"
|
| 352 |
}
|
|
|
|
| 357 |
},
|
| 358 |
{
|
| 359 |
"cell_type": "code",
|
| 360 |
+
"execution_count": 23,
|
| 361 |
"id": "9a09b2fd",
|
| 362 |
"metadata": {},
|
| 363 |
"outputs": [
|
|
|
|
| 367 |
"torch.Size([64, 3, 7, 7])"
|
| 368 |
]
|
| 369 |
},
|
| 370 |
+
"execution_count": 23,
|
| 371 |
"metadata": {},
|
| 372 |
"output_type": "execute_result"
|
| 373 |
}
|
|
|
|
| 378 |
},
|
| 379 |
{
|
| 380 |
"cell_type": "code",
|
| 381 |
+
"execution_count": 24,
|
| 382 |
"id": "a05ca56d",
|
| 383 |
"metadata": {},
|
| 384 |
"outputs": [
|
|
|
|
| 647 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
| 648 |
]
|
| 649 |
},
|
| 650 |
+
"execution_count": 24,
|
| 651 |
"metadata": {},
|
| 652 |
"output_type": "execute_result"
|
| 653 |
}
|
|
|
|
| 666 |
},
|
| 667 |
{
|
| 668 |
"cell_type": "code",
|
| 669 |
+
"execution_count": 25,
|
| 670 |
"id": "416da297",
|
| 671 |
"metadata": {},
|
| 672 |
"outputs": [],
|
|
|
|
| 679 |
},
|
| 680 |
{
|
| 681 |
"cell_type": "code",
|
| 682 |
+
"execution_count": 26,
|
| 683 |
"id": "a0d2f5c6",
|
| 684 |
"metadata": {},
|
| 685 |
"outputs": [],
|
|
|
|
| 690 |
},
|
| 691 |
{
|
| 692 |
"cell_type": "code",
|
| 693 |
+
"execution_count": 27,
|
| 694 |
"id": "4d5c5a92",
|
| 695 |
"metadata": {},
|
| 696 |
"outputs": [],
|
|
|
|
| 701 |
},
|
| 702 |
{
|
| 703 |
"cell_type": "code",
|
| 704 |
+
"execution_count": 28,
|
| 705 |
"id": "3debd079",
|
| 706 |
"metadata": {},
|
| 707 |
"outputs": [],
|
|
|
|
| 714 |
{
|
| 715 |
"cell_type": "code",
|
| 716 |
"execution_count": null,
|
| 717 |
+
"id": "359ae4e2",
|
| 718 |
"metadata": {},
|
| 719 |
"outputs": [],
|
| 720 |
"source": []
|
app.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "49f8a125",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
-
"execution_count":
|
| 16 |
"id": "71c3904e",
|
| 17 |
"metadata": {},
|
| 18 |
"outputs": [
|
|
@@ -22,7 +22,7 @@
|
|
| 22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
| 23 |
]
|
| 24 |
},
|
| 25 |
-
"execution_count":
|
| 26 |
"metadata": {},
|
| 27 |
"output_type": "execute_result"
|
| 28 |
}
|
|
@@ -42,7 +42,7 @@
|
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
-
"execution_count":
|
| 46 |
"id": "41471e63",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
@@ -57,7 +57,7 @@
|
|
| 57 |
},
|
| 58 |
{
|
| 59 |
"cell_type": "code",
|
| 60 |
-
"execution_count":
|
| 61 |
"id": "f2e432ef",
|
| 62 |
"metadata": {},
|
| 63 |
"outputs": [
|
|
@@ -68,7 +68,7 @@
|
|
| 68 |
"PILImage mode=RGB size=192x192"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
-
"execution_count":
|
| 72 |
"metadata": {},
|
| 73 |
"output_type": "execute_result"
|
| 74 |
}
|
|
@@ -81,7 +81,7 @@
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"cell_type": "code",
|
| 84 |
-
"execution_count":
|
| 85 |
"id": "20cf1910",
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
|
@@ -92,7 +92,29 @@
|
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"cell_type": "code",
|
| 95 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"id": "91133a4e",
|
| 97 |
"metadata": {},
|
| 98 |
"outputs": [
|
|
@@ -100,8 +122,8 @@
|
|
| 100 |
"name": "stdout",
|
| 101 |
"output_type": "stream",
|
| 102 |
"text": [
|
| 103 |
-
"CPU times: user 3 µs, sys:
|
| 104 |
-
"Wall time:
|
| 105 |
]
|
| 106 |
},
|
| 107 |
{
|
|
@@ -147,7 +169,7 @@
|
|
| 147 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
| 148 |
]
|
| 149 |
},
|
| 150 |
-
"execution_count":
|
| 151 |
"metadata": {},
|
| 152 |
"output_type": "execute_result"
|
| 153 |
}
|
|
@@ -159,7 +181,7 @@
|
|
| 159 |
},
|
| 160 |
{
|
| 161 |
"cell_type": "code",
|
| 162 |
-
"execution_count":
|
| 163 |
"id": "fbfb35f2",
|
| 164 |
"metadata": {},
|
| 165 |
"outputs": [],
|
|
@@ -169,12 +191,13 @@
|
|
| 169 |
"\n",
|
| 170 |
"def classify_image(img):\n",
|
| 171 |
" pred, idx, probs = learn.predict(img)\n",
|
| 172 |
-
" return dict(zip(categories, map(float, probs)))"
|
|
|
|
| 173 |
]
|
| 174 |
},
|
| 175 |
{
|
| 176 |
"cell_type": "code",
|
| 177 |
-
"execution_count":
|
| 178 |
"id": "607bdfc9",
|
| 179 |
"metadata": {},
|
| 180 |
"outputs": [
|
|
@@ -221,7 +244,7 @@
|
|
| 221 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
| 222 |
]
|
| 223 |
},
|
| 224 |
-
"execution_count":
|
| 225 |
"metadata": {},
|
| 226 |
"output_type": "execute_result"
|
| 227 |
}
|
|
@@ -232,7 +255,7 @@
|
|
| 232 |
},
|
| 233 |
{
|
| 234 |
"cell_type": "code",
|
| 235 |
-
"execution_count":
|
| 236 |
"id": "abd33e96",
|
| 237 |
"metadata": {},
|
| 238 |
"outputs": [
|
|
@@ -252,7 +275,7 @@
|
|
| 252 |
"text": [
|
| 253 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
| 254 |
"--------\n",
|
| 255 |
-
"Running on local URL: http://127.0.0.1:
|
| 256 |
"\n",
|
| 257 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 258 |
]
|
|
@@ -261,7 +284,7 @@
|
|
| 261 |
"data": {
|
| 262 |
"text/plain": []
|
| 263 |
},
|
| 264 |
-
"execution_count":
|
| 265 |
"metadata": {},
|
| 266 |
"output_type": "execute_result"
|
| 267 |
}
|
|
@@ -270,7 +293,7 @@
|
|
| 270 |
"#|export\n",
|
| 271 |
"# image = gr.Image(shape=(192, 192))\n",
|
| 272 |
"image = gr.Image(width=192, height=192)\n",
|
| 273 |
-
"label = gr.Label()\n",
|
| 274 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
| 275 |
"\n",
|
| 276 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
@@ -279,7 +302,7 @@
|
|
| 279 |
},
|
| 280 |
{
|
| 281 |
"cell_type": "code",
|
| 282 |
-
"execution_count":
|
| 283 |
"id": "f0d25829",
|
| 284 |
"metadata": {},
|
| 285 |
"outputs": [],
|
|
@@ -289,7 +312,7 @@
|
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"cell_type": "code",
|
| 292 |
-
"execution_count":
|
| 293 |
"id": "c75b8ca4",
|
| 294 |
"metadata": {},
|
| 295 |
"outputs": [],
|
|
@@ -299,7 +322,7 @@
|
|
| 299 |
},
|
| 300 |
{
|
| 301 |
"cell_type": "code",
|
| 302 |
-
"execution_count":
|
| 303 |
"id": "a1bd98e0",
|
| 304 |
"metadata": {},
|
| 305 |
"outputs": [
|
|
@@ -323,7 +346,7 @@
|
|
| 323 |
" requires_grad=True)"
|
| 324 |
]
|
| 325 |
},
|
| 326 |
-
"execution_count":
|
| 327 |
"metadata": {},
|
| 328 |
"output_type": "execute_result"
|
| 329 |
}
|
|
@@ -334,7 +357,7 @@
|
|
| 334 |
},
|
| 335 |
{
|
| 336 |
"cell_type": "code",
|
| 337 |
-
"execution_count":
|
| 338 |
"id": "9a09b2fd",
|
| 339 |
"metadata": {},
|
| 340 |
"outputs": [
|
|
@@ -344,7 +367,7 @@
|
|
| 344 |
"torch.Size([64, 3, 7, 7])"
|
| 345 |
]
|
| 346 |
},
|
| 347 |
-
"execution_count":
|
| 348 |
"metadata": {},
|
| 349 |
"output_type": "execute_result"
|
| 350 |
}
|
|
@@ -355,7 +378,7 @@
|
|
| 355 |
},
|
| 356 |
{
|
| 357 |
"cell_type": "code",
|
| 358 |
-
"execution_count":
|
| 359 |
"id": "a05ca56d",
|
| 360 |
"metadata": {},
|
| 361 |
"outputs": [
|
|
@@ -624,7 +647,7 @@
|
|
| 624 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
| 625 |
]
|
| 626 |
},
|
| 627 |
-
"execution_count":
|
| 628 |
"metadata": {},
|
| 629 |
"output_type": "execute_result"
|
| 630 |
}
|
|
@@ -643,7 +666,7 @@
|
|
| 643 |
},
|
| 644 |
{
|
| 645 |
"cell_type": "code",
|
| 646 |
-
"execution_count":
|
| 647 |
"id": "416da297",
|
| 648 |
"metadata": {},
|
| 649 |
"outputs": [],
|
|
@@ -656,7 +679,7 @@
|
|
| 656 |
},
|
| 657 |
{
|
| 658 |
"cell_type": "code",
|
| 659 |
-
"execution_count":
|
| 660 |
"id": "a0d2f5c6",
|
| 661 |
"metadata": {},
|
| 662 |
"outputs": [],
|
|
@@ -667,7 +690,7 @@
|
|
| 667 |
},
|
| 668 |
{
|
| 669 |
"cell_type": "code",
|
| 670 |
-
"execution_count":
|
| 671 |
"id": "4d5c5a92",
|
| 672 |
"metadata": {},
|
| 673 |
"outputs": [],
|
|
@@ -678,7 +701,7 @@
|
|
| 678 |
},
|
| 679 |
{
|
| 680 |
"cell_type": "code",
|
| 681 |
-
"execution_count":
|
| 682 |
"id": "3debd079",
|
| 683 |
"metadata": {},
|
| 684 |
"outputs": [],
|
|
@@ -691,7 +714,7 @@
|
|
| 691 |
{
|
| 692 |
"cell_type": "code",
|
| 693 |
"execution_count": null,
|
| 694 |
-
"id": "
|
| 695 |
"metadata": {},
|
| 696 |
"outputs": [],
|
| 697 |
"source": []
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
"id": "49f8a125",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
|
|
| 12 |
},
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
+
"execution_count": 3,
|
| 16 |
"id": "71c3904e",
|
| 17 |
"metadata": {},
|
| 18 |
"outputs": [
|
|
|
|
| 22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
| 23 |
]
|
| 24 |
},
|
| 25 |
+
"execution_count": 3,
|
| 26 |
"metadata": {},
|
| 27 |
"output_type": "execute_result"
|
| 28 |
}
|
|
|
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
+
"execution_count": 4,
|
| 46 |
"id": "41471e63",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
|
|
| 57 |
},
|
| 58 |
{
|
| 59 |
"cell_type": "code",
|
| 60 |
+
"execution_count": 5,
|
| 61 |
"id": "f2e432ef",
|
| 62 |
"metadata": {},
|
| 63 |
"outputs": [
|
|
|
|
| 68 |
"PILImage mode=RGB size=192x192"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
+
"execution_count": 5,
|
| 72 |
"metadata": {},
|
| 73 |
"output_type": "execute_result"
|
| 74 |
}
|
|
|
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"cell_type": "code",
|
| 84 |
+
"execution_count": 6,
|
| 85 |
"id": "20cf1910",
|
| 86 |
"metadata": {},
|
| 87 |
"outputs": [],
|
|
|
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"cell_type": "code",
|
| 95 |
+
"execution_count": 10,
|
| 96 |
+
"id": "7e80fd71",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [
|
| 99 |
+
{
|
| 100 |
+
"data": {
|
| 101 |
+
"text/plain": [
|
| 102 |
+
"[False, True]"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
"execution_count": 10,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"output_type": "execute_result"
|
| 108 |
+
}
|
| 109 |
+
],
|
| 110 |
+
"source": [
|
| 111 |
+
"LABELS = learn.dls.vocab\n",
|
| 112 |
+
"LABELS"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": 11,
|
| 118 |
"id": "91133a4e",
|
| 119 |
"metadata": {},
|
| 120 |
"outputs": [
|
|
|
|
| 122 |
"name": "stdout",
|
| 123 |
"output_type": "stream",
|
| 124 |
"text": [
|
| 125 |
+
"CPU times: user 3 µs, sys: 1e+03 ns, total: 4 µs\n",
|
| 126 |
+
"Wall time: 4.77 µs\n"
|
| 127 |
]
|
| 128 |
},
|
| 129 |
{
|
|
|
|
| 169 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
| 170 |
]
|
| 171 |
},
|
| 172 |
+
"execution_count": 11,
|
| 173 |
"metadata": {},
|
| 174 |
"output_type": "execute_result"
|
| 175 |
}
|
|
|
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"cell_type": "code",
|
| 184 |
+
"execution_count": 16,
|
| 185 |
"id": "fbfb35f2",
|
| 186 |
"metadata": {},
|
| 187 |
"outputs": [],
|
|
|
|
| 191 |
"\n",
|
| 192 |
"def classify_image(img):\n",
|
| 193 |
" pred, idx, probs = learn.predict(img)\n",
|
| 194 |
+
" return dict(zip(categories, map(float, probs)))\n",
|
| 195 |
+
"# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}"
|
| 196 |
]
|
| 197 |
},
|
| 198 |
{
|
| 199 |
"cell_type": "code",
|
| 200 |
+
"execution_count": 17,
|
| 201 |
"id": "607bdfc9",
|
| 202 |
"metadata": {},
|
| 203 |
"outputs": [
|
|
|
|
| 244 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
| 245 |
]
|
| 246 |
},
|
| 247 |
+
"execution_count": 17,
|
| 248 |
"metadata": {},
|
| 249 |
"output_type": "execute_result"
|
| 250 |
}
|
|
|
|
| 255 |
},
|
| 256 |
{
|
| 257 |
"cell_type": "code",
|
| 258 |
+
"execution_count": 19,
|
| 259 |
"id": "abd33e96",
|
| 260 |
"metadata": {},
|
| 261 |
"outputs": [
|
|
|
|
| 275 |
"text": [
|
| 276 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
| 277 |
"--------\n",
|
| 278 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
| 279 |
"\n",
|
| 280 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 281 |
]
|
|
|
|
| 284 |
"data": {
|
| 285 |
"text/plain": []
|
| 286 |
},
|
| 287 |
+
"execution_count": 19,
|
| 288 |
"metadata": {},
|
| 289 |
"output_type": "execute_result"
|
| 290 |
}
|
|
|
|
| 293 |
"#|export\n",
|
| 294 |
"# image = gr.Image(shape=(192, 192))\n",
|
| 295 |
"image = gr.Image(width=192, height=192)\n",
|
| 296 |
+
"label = gr.Label(num_top_classes=2)\n",
|
| 297 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
| 298 |
"\n",
|
| 299 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
|
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"cell_type": "code",
|
| 305 |
+
"execution_count": 20,
|
| 306 |
"id": "f0d25829",
|
| 307 |
"metadata": {},
|
| 308 |
"outputs": [],
|
|
|
|
| 312 |
},
|
| 313 |
{
|
| 314 |
"cell_type": "code",
|
| 315 |
+
"execution_count": 21,
|
| 316 |
"id": "c75b8ca4",
|
| 317 |
"metadata": {},
|
| 318 |
"outputs": [],
|
|
|
|
| 322 |
},
|
| 323 |
{
|
| 324 |
"cell_type": "code",
|
| 325 |
+
"execution_count": 22,
|
| 326 |
"id": "a1bd98e0",
|
| 327 |
"metadata": {},
|
| 328 |
"outputs": [
|
|
|
|
| 346 |
" requires_grad=True)"
|
| 347 |
]
|
| 348 |
},
|
| 349 |
+
"execution_count": 22,
|
| 350 |
"metadata": {},
|
| 351 |
"output_type": "execute_result"
|
| 352 |
}
|
|
|
|
| 357 |
},
|
| 358 |
{
|
| 359 |
"cell_type": "code",
|
| 360 |
+
"execution_count": 23,
|
| 361 |
"id": "9a09b2fd",
|
| 362 |
"metadata": {},
|
| 363 |
"outputs": [
|
|
|
|
| 367 |
"torch.Size([64, 3, 7, 7])"
|
| 368 |
]
|
| 369 |
},
|
| 370 |
+
"execution_count": 23,
|
| 371 |
"metadata": {},
|
| 372 |
"output_type": "execute_result"
|
| 373 |
}
|
|
|
|
| 378 |
},
|
| 379 |
{
|
| 380 |
"cell_type": "code",
|
| 381 |
+
"execution_count": 24,
|
| 382 |
"id": "a05ca56d",
|
| 383 |
"metadata": {},
|
| 384 |
"outputs": [
|
|
|
|
| 647 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
| 648 |
]
|
| 649 |
},
|
| 650 |
+
"execution_count": 24,
|
| 651 |
"metadata": {},
|
| 652 |
"output_type": "execute_result"
|
| 653 |
}
|
|
|
|
| 666 |
},
|
| 667 |
{
|
| 668 |
"cell_type": "code",
|
| 669 |
+
"execution_count": 25,
|
| 670 |
"id": "416da297",
|
| 671 |
"metadata": {},
|
| 672 |
"outputs": [],
|
|
|
|
| 679 |
},
|
| 680 |
{
|
| 681 |
"cell_type": "code",
|
| 682 |
+
"execution_count": 26,
|
| 683 |
"id": "a0d2f5c6",
|
| 684 |
"metadata": {},
|
| 685 |
"outputs": [],
|
|
|
|
| 690 |
},
|
| 691 |
{
|
| 692 |
"cell_type": "code",
|
| 693 |
+
"execution_count": 27,
|
| 694 |
"id": "4d5c5a92",
|
| 695 |
"metadata": {},
|
| 696 |
"outputs": [],
|
|
|
|
| 701 |
},
|
| 702 |
{
|
| 703 |
"cell_type": "code",
|
| 704 |
+
"execution_count": 28,
|
| 705 |
"id": "3debd079",
|
| 706 |
"metadata": {},
|
| 707 |
"outputs": [],
|
|
|
|
| 714 |
{
|
| 715 |
"cell_type": "code",
|
| 716 |
"execution_count": null,
|
| 717 |
+
"id": "359ae4e2",
|
| 718 |
"metadata": {},
|
| 719 |
"outputs": [],
|
| 720 |
"source": []
|
app.py
CHANGED
|
@@ -13,16 +13,18 @@ def is_cat(x):
|
|
| 13 |
# %% app.ipynb 5
|
| 14 |
learn = load_learner('model.pkl')
|
| 15 |
|
| 16 |
-
# %% app.ipynb
|
| 17 |
categories = ('Dog', 'Cat')
|
| 18 |
|
| 19 |
def classify_image(img):
|
| 20 |
pred, idx, probs = learn.predict(img)
|
| 21 |
return dict(zip(categories, map(float, probs)))
|
|
|
|
| 22 |
|
| 23 |
-
# %% app.ipynb
|
|
|
|
| 24 |
image = gr.Image(width=192, height=192)
|
| 25 |
-
label = gr.Label()
|
| 26 |
examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']
|
| 27 |
|
| 28 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
|
|
|
| 13 |
# %% app.ipynb 5
|
| 14 |
learn = load_learner('model.pkl')
|
| 15 |
|
| 16 |
+
# %% app.ipynb 8
|
| 17 |
categories = ('Dog', 'Cat')
|
| 18 |
|
| 19 |
def classify_image(img):
|
| 20 |
pred, idx, probs = learn.predict(img)
|
| 21 |
return dict(zip(categories, map(float, probs)))
|
| 22 |
+
# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}
|
| 23 |
|
| 24 |
+
# %% app.ipynb 10
|
| 25 |
+
# image = gr.Image(shape=(192, 192))
|
| 26 |
image = gr.Image(width=192, height=192)
|
| 27 |
+
label = gr.Label(num_top_classes=2)
|
| 28 |
examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']
|
| 29 |
|
| 30 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|