Spaces:
Sleeping
Sleeping
Chizoba Obasi
commited on
Commit
·
4d4c21b
1
Parent(s):
8b093fc
clean up output format of classifier
Browse files- .ipynb_checkpoints/app-checkpoint.ipynb +55 -32
- app.ipynb +55 -32
- app.py +5 -3
.ipynb_checkpoints/app-checkpoint.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "49f8a125",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"id": "71c3904e",
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
@@ -22,7 +22,7 @@
|
|
22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
23 |
]
|
24 |
},
|
25 |
-
"execution_count":
|
26 |
"metadata": {},
|
27 |
"output_type": "execute_result"
|
28 |
}
|
@@ -42,7 +42,7 @@
|
|
42 |
},
|
43 |
{
|
44 |
"cell_type": "code",
|
45 |
-
"execution_count":
|
46 |
"id": "41471e63",
|
47 |
"metadata": {},
|
48 |
"outputs": [],
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "code",
|
60 |
-
"execution_count":
|
61 |
"id": "f2e432ef",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
@@ -68,7 +68,7 @@
|
|
68 |
"PILImage mode=RGB size=192x192"
|
69 |
]
|
70 |
},
|
71 |
-
"execution_count":
|
72 |
"metadata": {},
|
73 |
"output_type": "execute_result"
|
74 |
}
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
-
"execution_count":
|
85 |
"id": "20cf1910",
|
86 |
"metadata": {},
|
87 |
"outputs": [],
|
@@ -92,7 +92,29 @@
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"id": "91133a4e",
|
97 |
"metadata": {},
|
98 |
"outputs": [
|
@@ -100,8 +122,8 @@
|
|
100 |
"name": "stdout",
|
101 |
"output_type": "stream",
|
102 |
"text": [
|
103 |
-
"CPU times: user 3 µs, sys:
|
104 |
-
"Wall time:
|
105 |
]
|
106 |
},
|
107 |
{
|
@@ -147,7 +169,7 @@
|
|
147 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
148 |
]
|
149 |
},
|
150 |
-
"execution_count":
|
151 |
"metadata": {},
|
152 |
"output_type": "execute_result"
|
153 |
}
|
@@ -159,7 +181,7 @@
|
|
159 |
},
|
160 |
{
|
161 |
"cell_type": "code",
|
162 |
-
"execution_count":
|
163 |
"id": "fbfb35f2",
|
164 |
"metadata": {},
|
165 |
"outputs": [],
|
@@ -169,12 +191,13 @@
|
|
169 |
"\n",
|
170 |
"def classify_image(img):\n",
|
171 |
" pred, idx, probs = learn.predict(img)\n",
|
172 |
-
" return dict(zip(categories, map(float, probs)))"
|
|
|
173 |
]
|
174 |
},
|
175 |
{
|
176 |
"cell_type": "code",
|
177 |
-
"execution_count":
|
178 |
"id": "607bdfc9",
|
179 |
"metadata": {},
|
180 |
"outputs": [
|
@@ -221,7 +244,7 @@
|
|
221 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
222 |
]
|
223 |
},
|
224 |
-
"execution_count":
|
225 |
"metadata": {},
|
226 |
"output_type": "execute_result"
|
227 |
}
|
@@ -232,7 +255,7 @@
|
|
232 |
},
|
233 |
{
|
234 |
"cell_type": "code",
|
235 |
-
"execution_count":
|
236 |
"id": "abd33e96",
|
237 |
"metadata": {},
|
238 |
"outputs": [
|
@@ -252,7 +275,7 @@
|
|
252 |
"text": [
|
253 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
254 |
"--------\n",
|
255 |
-
"Running on local URL: http://127.0.0.1:
|
256 |
"\n",
|
257 |
"To create a public link, set `share=True` in `launch()`.\n"
|
258 |
]
|
@@ -261,7 +284,7 @@
|
|
261 |
"data": {
|
262 |
"text/plain": []
|
263 |
},
|
264 |
-
"execution_count":
|
265 |
"metadata": {},
|
266 |
"output_type": "execute_result"
|
267 |
}
|
@@ -270,7 +293,7 @@
|
|
270 |
"#|export\n",
|
271 |
"# image = gr.Image(shape=(192, 192))\n",
|
272 |
"image = gr.Image(width=192, height=192)\n",
|
273 |
-
"label = gr.Label()\n",
|
274 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
275 |
"\n",
|
276 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
@@ -279,7 +302,7 @@
|
|
279 |
},
|
280 |
{
|
281 |
"cell_type": "code",
|
282 |
-
"execution_count":
|
283 |
"id": "f0d25829",
|
284 |
"metadata": {},
|
285 |
"outputs": [],
|
@@ -289,7 +312,7 @@
|
|
289 |
},
|
290 |
{
|
291 |
"cell_type": "code",
|
292 |
-
"execution_count":
|
293 |
"id": "c75b8ca4",
|
294 |
"metadata": {},
|
295 |
"outputs": [],
|
@@ -299,7 +322,7 @@
|
|
299 |
},
|
300 |
{
|
301 |
"cell_type": "code",
|
302 |
-
"execution_count":
|
303 |
"id": "a1bd98e0",
|
304 |
"metadata": {},
|
305 |
"outputs": [
|
@@ -323,7 +346,7 @@
|
|
323 |
" requires_grad=True)"
|
324 |
]
|
325 |
},
|
326 |
-
"execution_count":
|
327 |
"metadata": {},
|
328 |
"output_type": "execute_result"
|
329 |
}
|
@@ -334,7 +357,7 @@
|
|
334 |
},
|
335 |
{
|
336 |
"cell_type": "code",
|
337 |
-
"execution_count":
|
338 |
"id": "9a09b2fd",
|
339 |
"metadata": {},
|
340 |
"outputs": [
|
@@ -344,7 +367,7 @@
|
|
344 |
"torch.Size([64, 3, 7, 7])"
|
345 |
]
|
346 |
},
|
347 |
-
"execution_count":
|
348 |
"metadata": {},
|
349 |
"output_type": "execute_result"
|
350 |
}
|
@@ -355,7 +378,7 @@
|
|
355 |
},
|
356 |
{
|
357 |
"cell_type": "code",
|
358 |
-
"execution_count":
|
359 |
"id": "a05ca56d",
|
360 |
"metadata": {},
|
361 |
"outputs": [
|
@@ -624,7 +647,7 @@
|
|
624 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
625 |
]
|
626 |
},
|
627 |
-
"execution_count":
|
628 |
"metadata": {},
|
629 |
"output_type": "execute_result"
|
630 |
}
|
@@ -643,7 +666,7 @@
|
|
643 |
},
|
644 |
{
|
645 |
"cell_type": "code",
|
646 |
-
"execution_count":
|
647 |
"id": "416da297",
|
648 |
"metadata": {},
|
649 |
"outputs": [],
|
@@ -656,7 +679,7 @@
|
|
656 |
},
|
657 |
{
|
658 |
"cell_type": "code",
|
659 |
-
"execution_count":
|
660 |
"id": "a0d2f5c6",
|
661 |
"metadata": {},
|
662 |
"outputs": [],
|
@@ -667,7 +690,7 @@
|
|
667 |
},
|
668 |
{
|
669 |
"cell_type": "code",
|
670 |
-
"execution_count":
|
671 |
"id": "4d5c5a92",
|
672 |
"metadata": {},
|
673 |
"outputs": [],
|
@@ -678,7 +701,7 @@
|
|
678 |
},
|
679 |
{
|
680 |
"cell_type": "code",
|
681 |
-
"execution_count":
|
682 |
"id": "3debd079",
|
683 |
"metadata": {},
|
684 |
"outputs": [],
|
@@ -691,7 +714,7 @@
|
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
"execution_count": null,
|
694 |
-
"id": "
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
697 |
"source": []
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"id": "49f8a125",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 3,
|
16 |
"id": "71c3904e",
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
|
|
22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
23 |
]
|
24 |
},
|
25 |
+
"execution_count": 3,
|
26 |
"metadata": {},
|
27 |
"output_type": "execute_result"
|
28 |
}
|
|
|
42 |
},
|
43 |
{
|
44 |
"cell_type": "code",
|
45 |
+
"execution_count": 4,
|
46 |
"id": "41471e63",
|
47 |
"metadata": {},
|
48 |
"outputs": [],
|
|
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "code",
|
60 |
+
"execution_count": 5,
|
61 |
"id": "f2e432ef",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
|
|
68 |
"PILImage mode=RGB size=192x192"
|
69 |
]
|
70 |
},
|
71 |
+
"execution_count": 5,
|
72 |
"metadata": {},
|
73 |
"output_type": "execute_result"
|
74 |
}
|
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
+
"execution_count": 6,
|
85 |
"id": "20cf1910",
|
86 |
"metadata": {},
|
87 |
"outputs": [],
|
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
+
"execution_count": 10,
|
96 |
+
"id": "7e80fd71",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"text/plain": [
|
102 |
+
"[False, True]"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 10,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"LABELS = learn.dls.vocab\n",
|
112 |
+
"LABELS"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 11,
|
118 |
"id": "91133a4e",
|
119 |
"metadata": {},
|
120 |
"outputs": [
|
|
|
122 |
"name": "stdout",
|
123 |
"output_type": "stream",
|
124 |
"text": [
|
125 |
+
"CPU times: user 3 µs, sys: 1e+03 ns, total: 4 µs\n",
|
126 |
+
"Wall time: 4.77 µs\n"
|
127 |
]
|
128 |
},
|
129 |
{
|
|
|
169 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
170 |
]
|
171 |
},
|
172 |
+
"execution_count": 11,
|
173 |
"metadata": {},
|
174 |
"output_type": "execute_result"
|
175 |
}
|
|
|
181 |
},
|
182 |
{
|
183 |
"cell_type": "code",
|
184 |
+
"execution_count": 16,
|
185 |
"id": "fbfb35f2",
|
186 |
"metadata": {},
|
187 |
"outputs": [],
|
|
|
191 |
"\n",
|
192 |
"def classify_image(img):\n",
|
193 |
" pred, idx, probs = learn.predict(img)\n",
|
194 |
+
" return dict(zip(categories, map(float, probs)))\n",
|
195 |
+
"# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}"
|
196 |
]
|
197 |
},
|
198 |
{
|
199 |
"cell_type": "code",
|
200 |
+
"execution_count": 17,
|
201 |
"id": "607bdfc9",
|
202 |
"metadata": {},
|
203 |
"outputs": [
|
|
|
244 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
245 |
]
|
246 |
},
|
247 |
+
"execution_count": 17,
|
248 |
"metadata": {},
|
249 |
"output_type": "execute_result"
|
250 |
}
|
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
+
"execution_count": 19,
|
259 |
"id": "abd33e96",
|
260 |
"metadata": {},
|
261 |
"outputs": [
|
|
|
275 |
"text": [
|
276 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
277 |
"--------\n",
|
278 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
279 |
"\n",
|
280 |
"To create a public link, set `share=True` in `launch()`.\n"
|
281 |
]
|
|
|
284 |
"data": {
|
285 |
"text/plain": []
|
286 |
},
|
287 |
+
"execution_count": 19,
|
288 |
"metadata": {},
|
289 |
"output_type": "execute_result"
|
290 |
}
|
|
|
293 |
"#|export\n",
|
294 |
"# image = gr.Image(shape=(192, 192))\n",
|
295 |
"image = gr.Image(width=192, height=192)\n",
|
296 |
+
"label = gr.Label(num_top_classes=2)\n",
|
297 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
298 |
"\n",
|
299 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
|
302 |
},
|
303 |
{
|
304 |
"cell_type": "code",
|
305 |
+
"execution_count": 20,
|
306 |
"id": "f0d25829",
|
307 |
"metadata": {},
|
308 |
"outputs": [],
|
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
+
"execution_count": 21,
|
316 |
"id": "c75b8ca4",
|
317 |
"metadata": {},
|
318 |
"outputs": [],
|
|
|
322 |
},
|
323 |
{
|
324 |
"cell_type": "code",
|
325 |
+
"execution_count": 22,
|
326 |
"id": "a1bd98e0",
|
327 |
"metadata": {},
|
328 |
"outputs": [
|
|
|
346 |
" requires_grad=True)"
|
347 |
]
|
348 |
},
|
349 |
+
"execution_count": 22,
|
350 |
"metadata": {},
|
351 |
"output_type": "execute_result"
|
352 |
}
|
|
|
357 |
},
|
358 |
{
|
359 |
"cell_type": "code",
|
360 |
+
"execution_count": 23,
|
361 |
"id": "9a09b2fd",
|
362 |
"metadata": {},
|
363 |
"outputs": [
|
|
|
367 |
"torch.Size([64, 3, 7, 7])"
|
368 |
]
|
369 |
},
|
370 |
+
"execution_count": 23,
|
371 |
"metadata": {},
|
372 |
"output_type": "execute_result"
|
373 |
}
|
|
|
378 |
},
|
379 |
{
|
380 |
"cell_type": "code",
|
381 |
+
"execution_count": 24,
|
382 |
"id": "a05ca56d",
|
383 |
"metadata": {},
|
384 |
"outputs": [
|
|
|
647 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
648 |
]
|
649 |
},
|
650 |
+
"execution_count": 24,
|
651 |
"metadata": {},
|
652 |
"output_type": "execute_result"
|
653 |
}
|
|
|
666 |
},
|
667 |
{
|
668 |
"cell_type": "code",
|
669 |
+
"execution_count": 25,
|
670 |
"id": "416da297",
|
671 |
"metadata": {},
|
672 |
"outputs": [],
|
|
|
679 |
},
|
680 |
{
|
681 |
"cell_type": "code",
|
682 |
+
"execution_count": 26,
|
683 |
"id": "a0d2f5c6",
|
684 |
"metadata": {},
|
685 |
"outputs": [],
|
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
+
"execution_count": 27,
|
694 |
"id": "4d5c5a92",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
|
|
701 |
},
|
702 |
{
|
703 |
"cell_type": "code",
|
704 |
+
"execution_count": 28,
|
705 |
"id": "3debd079",
|
706 |
"metadata": {},
|
707 |
"outputs": [],
|
|
|
714 |
{
|
715 |
"cell_type": "code",
|
716 |
"execution_count": null,
|
717 |
+
"id": "359ae4e2",
|
718 |
"metadata": {},
|
719 |
"outputs": [],
|
720 |
"source": []
|
app.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "49f8a125",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
-
"execution_count":
|
16 |
"id": "71c3904e",
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
@@ -22,7 +22,7 @@
|
|
22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
23 |
]
|
24 |
},
|
25 |
-
"execution_count":
|
26 |
"metadata": {},
|
27 |
"output_type": "execute_result"
|
28 |
}
|
@@ -42,7 +42,7 @@
|
|
42 |
},
|
43 |
{
|
44 |
"cell_type": "code",
|
45 |
-
"execution_count":
|
46 |
"id": "41471e63",
|
47 |
"metadata": {},
|
48 |
"outputs": [],
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "code",
|
60 |
-
"execution_count":
|
61 |
"id": "f2e432ef",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
@@ -68,7 +68,7 @@
|
|
68 |
"PILImage mode=RGB size=192x192"
|
69 |
]
|
70 |
},
|
71 |
-
"execution_count":
|
72 |
"metadata": {},
|
73 |
"output_type": "execute_result"
|
74 |
}
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
-
"execution_count":
|
85 |
"id": "20cf1910",
|
86 |
"metadata": {},
|
87 |
"outputs": [],
|
@@ -92,7 +92,29 @@
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"id": "91133a4e",
|
97 |
"metadata": {},
|
98 |
"outputs": [
|
@@ -100,8 +122,8 @@
|
|
100 |
"name": "stdout",
|
101 |
"output_type": "stream",
|
102 |
"text": [
|
103 |
-
"CPU times: user 3 µs, sys:
|
104 |
-
"Wall time:
|
105 |
]
|
106 |
},
|
107 |
{
|
@@ -147,7 +169,7 @@
|
|
147 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
148 |
]
|
149 |
},
|
150 |
-
"execution_count":
|
151 |
"metadata": {},
|
152 |
"output_type": "execute_result"
|
153 |
}
|
@@ -159,7 +181,7 @@
|
|
159 |
},
|
160 |
{
|
161 |
"cell_type": "code",
|
162 |
-
"execution_count":
|
163 |
"id": "fbfb35f2",
|
164 |
"metadata": {},
|
165 |
"outputs": [],
|
@@ -169,12 +191,13 @@
|
|
169 |
"\n",
|
170 |
"def classify_image(img):\n",
|
171 |
" pred, idx, probs = learn.predict(img)\n",
|
172 |
-
" return dict(zip(categories, map(float, probs)))"
|
|
|
173 |
]
|
174 |
},
|
175 |
{
|
176 |
"cell_type": "code",
|
177 |
-
"execution_count":
|
178 |
"id": "607bdfc9",
|
179 |
"metadata": {},
|
180 |
"outputs": [
|
@@ -221,7 +244,7 @@
|
|
221 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
222 |
]
|
223 |
},
|
224 |
-
"execution_count":
|
225 |
"metadata": {},
|
226 |
"output_type": "execute_result"
|
227 |
}
|
@@ -232,7 +255,7 @@
|
|
232 |
},
|
233 |
{
|
234 |
"cell_type": "code",
|
235 |
-
"execution_count":
|
236 |
"id": "abd33e96",
|
237 |
"metadata": {},
|
238 |
"outputs": [
|
@@ -252,7 +275,7 @@
|
|
252 |
"text": [
|
253 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
254 |
"--------\n",
|
255 |
-
"Running on local URL: http://127.0.0.1:
|
256 |
"\n",
|
257 |
"To create a public link, set `share=True` in `launch()`.\n"
|
258 |
]
|
@@ -261,7 +284,7 @@
|
|
261 |
"data": {
|
262 |
"text/plain": []
|
263 |
},
|
264 |
-
"execution_count":
|
265 |
"metadata": {},
|
266 |
"output_type": "execute_result"
|
267 |
}
|
@@ -270,7 +293,7 @@
|
|
270 |
"#|export\n",
|
271 |
"# image = gr.Image(shape=(192, 192))\n",
|
272 |
"image = gr.Image(width=192, height=192)\n",
|
273 |
-
"label = gr.Label()\n",
|
274 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
275 |
"\n",
|
276 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
@@ -279,7 +302,7 @@
|
|
279 |
},
|
280 |
{
|
281 |
"cell_type": "code",
|
282 |
-
"execution_count":
|
283 |
"id": "f0d25829",
|
284 |
"metadata": {},
|
285 |
"outputs": [],
|
@@ -289,7 +312,7 @@
|
|
289 |
},
|
290 |
{
|
291 |
"cell_type": "code",
|
292 |
-
"execution_count":
|
293 |
"id": "c75b8ca4",
|
294 |
"metadata": {},
|
295 |
"outputs": [],
|
@@ -299,7 +322,7 @@
|
|
299 |
},
|
300 |
{
|
301 |
"cell_type": "code",
|
302 |
-
"execution_count":
|
303 |
"id": "a1bd98e0",
|
304 |
"metadata": {},
|
305 |
"outputs": [
|
@@ -323,7 +346,7 @@
|
|
323 |
" requires_grad=True)"
|
324 |
]
|
325 |
},
|
326 |
-
"execution_count":
|
327 |
"metadata": {},
|
328 |
"output_type": "execute_result"
|
329 |
}
|
@@ -334,7 +357,7 @@
|
|
334 |
},
|
335 |
{
|
336 |
"cell_type": "code",
|
337 |
-
"execution_count":
|
338 |
"id": "9a09b2fd",
|
339 |
"metadata": {},
|
340 |
"outputs": [
|
@@ -344,7 +367,7 @@
|
|
344 |
"torch.Size([64, 3, 7, 7])"
|
345 |
]
|
346 |
},
|
347 |
-
"execution_count":
|
348 |
"metadata": {},
|
349 |
"output_type": "execute_result"
|
350 |
}
|
@@ -355,7 +378,7 @@
|
|
355 |
},
|
356 |
{
|
357 |
"cell_type": "code",
|
358 |
-
"execution_count":
|
359 |
"id": "a05ca56d",
|
360 |
"metadata": {},
|
361 |
"outputs": [
|
@@ -624,7 +647,7 @@
|
|
624 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
625 |
]
|
626 |
},
|
627 |
-
"execution_count":
|
628 |
"metadata": {},
|
629 |
"output_type": "execute_result"
|
630 |
}
|
@@ -643,7 +666,7 @@
|
|
643 |
},
|
644 |
{
|
645 |
"cell_type": "code",
|
646 |
-
"execution_count":
|
647 |
"id": "416da297",
|
648 |
"metadata": {},
|
649 |
"outputs": [],
|
@@ -656,7 +679,7 @@
|
|
656 |
},
|
657 |
{
|
658 |
"cell_type": "code",
|
659 |
-
"execution_count":
|
660 |
"id": "a0d2f5c6",
|
661 |
"metadata": {},
|
662 |
"outputs": [],
|
@@ -667,7 +690,7 @@
|
|
667 |
},
|
668 |
{
|
669 |
"cell_type": "code",
|
670 |
-
"execution_count":
|
671 |
"id": "4d5c5a92",
|
672 |
"metadata": {},
|
673 |
"outputs": [],
|
@@ -678,7 +701,7 @@
|
|
678 |
},
|
679 |
{
|
680 |
"cell_type": "code",
|
681 |
-
"execution_count":
|
682 |
"id": "3debd079",
|
683 |
"metadata": {},
|
684 |
"outputs": [],
|
@@ -691,7 +714,7 @@
|
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
"execution_count": null,
|
694 |
-
"id": "
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
697 |
"source": []
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"id": "49f8a125",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
|
|
12 |
},
|
13 |
{
|
14 |
"cell_type": "code",
|
15 |
+
"execution_count": 3,
|
16 |
"id": "71c3904e",
|
17 |
"metadata": {},
|
18 |
"outputs": [
|
|
|
22 |
"'/Users/CEO/miniconda3/envs/py37/bin/python'"
|
23 |
]
|
24 |
},
|
25 |
+
"execution_count": 3,
|
26 |
"metadata": {},
|
27 |
"output_type": "execute_result"
|
28 |
}
|
|
|
42 |
},
|
43 |
{
|
44 |
"cell_type": "code",
|
45 |
+
"execution_count": 4,
|
46 |
"id": "41471e63",
|
47 |
"metadata": {},
|
48 |
"outputs": [],
|
|
|
57 |
},
|
58 |
{
|
59 |
"cell_type": "code",
|
60 |
+
"execution_count": 5,
|
61 |
"id": "f2e432ef",
|
62 |
"metadata": {},
|
63 |
"outputs": [
|
|
|
68 |
"PILImage mode=RGB size=192x192"
|
69 |
]
|
70 |
},
|
71 |
+
"execution_count": 5,
|
72 |
"metadata": {},
|
73 |
"output_type": "execute_result"
|
74 |
}
|
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
+
"execution_count": 6,
|
85 |
"id": "20cf1910",
|
86 |
"metadata": {},
|
87 |
"outputs": [],
|
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
+
"execution_count": 10,
|
96 |
+
"id": "7e80fd71",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"text/plain": [
|
102 |
+
"[False, True]"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 10,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"LABELS = learn.dls.vocab\n",
|
112 |
+
"LABELS"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 11,
|
118 |
"id": "91133a4e",
|
119 |
"metadata": {},
|
120 |
"outputs": [
|
|
|
122 |
"name": "stdout",
|
123 |
"output_type": "stream",
|
124 |
"text": [
|
125 |
+
"CPU times: user 3 µs, sys: 1e+03 ns, total: 4 µs\n",
|
126 |
+
"Wall time: 4.77 µs\n"
|
127 |
]
|
128 |
},
|
129 |
{
|
|
|
169 |
"('False', tensor(0), tensor([9.9996e-01, 4.0008e-05]))"
|
170 |
]
|
171 |
},
|
172 |
+
"execution_count": 11,
|
173 |
"metadata": {},
|
174 |
"output_type": "execute_result"
|
175 |
}
|
|
|
181 |
},
|
182 |
{
|
183 |
"cell_type": "code",
|
184 |
+
"execution_count": 16,
|
185 |
"id": "fbfb35f2",
|
186 |
"metadata": {},
|
187 |
"outputs": [],
|
|
|
191 |
"\n",
|
192 |
"def classify_image(img):\n",
|
193 |
" pred, idx, probs = learn.predict(img)\n",
|
194 |
+
" return dict(zip(categories, map(float, probs)))\n",
|
195 |
+
"# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}"
|
196 |
]
|
197 |
},
|
198 |
{
|
199 |
"cell_type": "code",
|
200 |
+
"execution_count": 17,
|
201 |
"id": "607bdfc9",
|
202 |
"metadata": {},
|
203 |
"outputs": [
|
|
|
244 |
"{'Dog': 0.9999599456787109, 'Cat': 4.000756598543376e-05}"
|
245 |
]
|
246 |
},
|
247 |
+
"execution_count": 17,
|
248 |
"metadata": {},
|
249 |
"output_type": "execute_result"
|
250 |
}
|
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
+
"execution_count": 19,
|
259 |
"id": "abd33e96",
|
260 |
"metadata": {},
|
261 |
"outputs": [
|
|
|
275 |
"text": [
|
276 |
"IMPORTANT: You are using gradio version 3.34.0, however version 4.29.0 is available, please upgrade.\n",
|
277 |
"--------\n",
|
278 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
279 |
"\n",
|
280 |
"To create a public link, set `share=True` in `launch()`.\n"
|
281 |
]
|
|
|
284 |
"data": {
|
285 |
"text/plain": []
|
286 |
},
|
287 |
+
"execution_count": 19,
|
288 |
"metadata": {},
|
289 |
"output_type": "execute_result"
|
290 |
}
|
|
|
293 |
"#|export\n",
|
294 |
"# image = gr.Image(shape=(192, 192))\n",
|
295 |
"image = gr.Image(width=192, height=192)\n",
|
296 |
+
"label = gr.Label(num_top_classes=2)\n",
|
297 |
"examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']\n",
|
298 |
"\n",
|
299 |
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
|
|
|
302 |
},
|
303 |
{
|
304 |
"cell_type": "code",
|
305 |
+
"execution_count": 20,
|
306 |
"id": "f0d25829",
|
307 |
"metadata": {},
|
308 |
"outputs": [],
|
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
+
"execution_count": 21,
|
316 |
"id": "c75b8ca4",
|
317 |
"metadata": {},
|
318 |
"outputs": [],
|
|
|
322 |
},
|
323 |
{
|
324 |
"cell_type": "code",
|
325 |
+
"execution_count": 22,
|
326 |
"id": "a1bd98e0",
|
327 |
"metadata": {},
|
328 |
"outputs": [
|
|
|
346 |
" requires_grad=True)"
|
347 |
]
|
348 |
},
|
349 |
+
"execution_count": 22,
|
350 |
"metadata": {},
|
351 |
"output_type": "execute_result"
|
352 |
}
|
|
|
357 |
},
|
358 |
{
|
359 |
"cell_type": "code",
|
360 |
+
"execution_count": 23,
|
361 |
"id": "9a09b2fd",
|
362 |
"metadata": {},
|
363 |
"outputs": [
|
|
|
367 |
"torch.Size([64, 3, 7, 7])"
|
368 |
]
|
369 |
},
|
370 |
+
"execution_count": 23,
|
371 |
"metadata": {},
|
372 |
"output_type": "execute_result"
|
373 |
}
|
|
|
378 |
},
|
379 |
{
|
380 |
"cell_type": "code",
|
381 |
+
"execution_count": 24,
|
382 |
"id": "a05ca56d",
|
383 |
"metadata": {},
|
384 |
"outputs": [
|
|
|
647 |
" -7.1066e-02, -6.6630e-02]]]], requires_grad=True)"
|
648 |
]
|
649 |
},
|
650 |
+
"execution_count": 24,
|
651 |
"metadata": {},
|
652 |
"output_type": "execute_result"
|
653 |
}
|
|
|
666 |
},
|
667 |
{
|
668 |
"cell_type": "code",
|
669 |
+
"execution_count": 25,
|
670 |
"id": "416da297",
|
671 |
"metadata": {},
|
672 |
"outputs": [],
|
|
|
679 |
},
|
680 |
{
|
681 |
"cell_type": "code",
|
682 |
+
"execution_count": 26,
|
683 |
"id": "a0d2f5c6",
|
684 |
"metadata": {},
|
685 |
"outputs": [],
|
|
|
690 |
},
|
691 |
{
|
692 |
"cell_type": "code",
|
693 |
+
"execution_count": 27,
|
694 |
"id": "4d5c5a92",
|
695 |
"metadata": {},
|
696 |
"outputs": [],
|
|
|
701 |
},
|
702 |
{
|
703 |
"cell_type": "code",
|
704 |
+
"execution_count": 28,
|
705 |
"id": "3debd079",
|
706 |
"metadata": {},
|
707 |
"outputs": [],
|
|
|
714 |
{
|
715 |
"cell_type": "code",
|
716 |
"execution_count": null,
|
717 |
+
"id": "359ae4e2",
|
718 |
"metadata": {},
|
719 |
"outputs": [],
|
720 |
"source": []
|
app.py
CHANGED
@@ -13,16 +13,18 @@ def is_cat(x):
|
|
13 |
# %% app.ipynb 5
|
14 |
learn = load_learner('model.pkl')
|
15 |
|
16 |
-
# %% app.ipynb
|
17 |
categories = ('Dog', 'Cat')
|
18 |
|
19 |
def classify_image(img):
|
20 |
pred, idx, probs = learn.predict(img)
|
21 |
return dict(zip(categories, map(float, probs)))
|
|
|
22 |
|
23 |
-
# %% app.ipynb
|
|
|
24 |
image = gr.Image(width=192, height=192)
|
25 |
-
label = gr.Label()
|
26 |
examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']
|
27 |
|
28 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
|
|
13 |
# %% app.ipynb 5
|
14 |
learn = load_learner('model.pkl')
|
15 |
|
16 |
+
# %% app.ipynb 8
|
17 |
categories = ('Dog', 'Cat')
|
18 |
|
19 |
def classify_image(img):
|
20 |
pred, idx, probs = learn.predict(img)
|
21 |
return dict(zip(categories, map(float, probs)))
|
22 |
+
# return {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)}
|
23 |
|
24 |
+
# %% app.ipynb 10
|
25 |
+
# image = gr.Image(shape=(192, 192))
|
26 |
image = gr.Image(width=192, height=192)
|
27 |
+
label = gr.Label(num_top_classes=2)
|
28 |
examples = ['dog.jpeg', 'cat.jpeg', 'bear.jpeg', 'dog2.jpeg']
|
29 |
|
30 |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|