Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from datasets import load_dataset | |
from duckduckgo_search import DDGS | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext | |
from huggingface_hub import InferenceClient | |
import wikipediaapi | |
# Constants | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Advanced LLM via Hugging Face Inference API | |
llm_model_id = "deepseek-ai/DeepSeek-R1" | |
hf_client = InferenceClient(llm_model_id, token=HF_TOKEN) | |
# Wikipedia API setup | |
wiki_api = wikipediaapi.Wikipedia('en') | |
# Load Wikipedia dataset from Hugging Face | |
wiki_dataset = load_dataset( | |
"wikipedia", "20220301.en", split="train[:10000]", trust_remote_code=True | |
) | |
# DuckDuckGo search function | |
def duckduckgo_search(query): | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=3)] | |
if results: | |
return "\n".join([r["body"] for r in results if r.get("body")]) | |
else: | |
return "No results found." | |
# Smart Agent combining multiple sources | |
class SmartAgent: | |
def __init__(self): | |
service_context = ServiceContext.from_defaults( | |
llm=HuggingFaceLLM(model_name=llm_model_id, token=HF_TOKEN) | |
) | |
docs = [doc["text"] for doc in wiki_dataset] | |
self.index = VectorStoreIndex.from_documents( | |
[SimpleDirectoryReader.input_to_document(doc) for doc in docs], | |
service_context=service_context, | |
show_progress=True | |
) | |
self.query_engine = self.index.as_query_engine() | |
def __call__(self, question: str) -> str: | |
question_lower = question.lower() | |
# Use DuckDuckGo for recent events, dates, or temporal queries | |
if any(term in question_lower for term in ["current", "latest", "2024", "2025", "recent", "today", "president"]): | |
return duckduckgo_search(question) | |
# Check if Wikipedia page exists for topic | |
page = wiki_api.page(question) | |
if page.exists(): | |
return page.summary[:1000] + "..." | |
# Fallback to indexed Wikipedia with RAG | |
try: | |
response = self.query_engine.query(question) | |
return str(response) | |
except Exception as e: | |
return f"LLM query error: {e}" | |
# Run and submit evaluation | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
else: | |
return "Please Login to Hugging Face with the button.", None | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
# Instantiate agent | |
agent = SmartAgent() | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# Fetch questions | |
try: | |
questions_data = requests.get(questions_url).json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log, answers_payload = [], [] | |
for item in questions_data: | |
task_id, question_text = item.get("task_id"), item.get("question") | |
answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer}) | |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
try: | |
result_data = requests.post(submit_url, json=submission_data).json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score')}%\n" | |
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')}) correct\n" | |
f"Message: {result_data.get('message')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# Gradio interface setup | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🚀 Smart Multi-Source Agent Evaluation") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Status & Results", lines=6, interactive=False) | |
results_table = gr.DataFrame(label="Agent Answers") | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |