Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,18 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
|
|
|
6 |
from smolagents.agents import ToolCallingAgent
|
7 |
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
|
10 |
def create_agent():
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# You specify the tool names as strings!
|
15 |
agent = ToolCallingAgent(
|
16 |
tools=["wikipedia", "duckduckgo", "web_search"],
|
17 |
-
model=
|
18 |
-
model_kwargs={"repo_id": "HuggingFaceH4/zephyr-7b-beta"},
|
19 |
)
|
20 |
return agent
|
21 |
|
@@ -23,48 +22,35 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
23 |
space_id = os.getenv("SPACE_ID")
|
24 |
if profile:
|
25 |
username = f"{profile.username}"
|
26 |
-
print(f"User logged in: {username}")
|
27 |
else:
|
28 |
-
print("User not logged in.")
|
29 |
return "Please Login to Hugging Face with the button.", None
|
30 |
|
31 |
api_url = DEFAULT_API_URL
|
32 |
questions_url = f"{api_url}/questions"
|
33 |
submit_url = f"{api_url}/submit"
|
34 |
|
35 |
-
# Create agent with all relevant tools
|
36 |
try:
|
37 |
agent = create_agent()
|
38 |
except Exception as e:
|
39 |
return f"Error initializing agent: {e}", None
|
40 |
|
41 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
42 |
-
print(agent_code)
|
43 |
|
44 |
-
# Fetch Questions
|
45 |
-
print(f"Fetching questions from: {questions_url}")
|
46 |
try:
|
47 |
response = requests.get(questions_url, timeout=15)
|
48 |
response.raise_for_status()
|
49 |
questions_data = response.json()
|
50 |
if not questions_data:
|
51 |
-
print("Fetched questions list is empty.")
|
52 |
return "Fetched questions list is empty or invalid format.", None
|
53 |
-
print(f"Fetched {len(questions_data)} questions.")
|
54 |
-
except requests.exceptions.RequestException as e:
|
55 |
-
return f"Error fetching questions: {e}", None
|
56 |
except Exception as e:
|
57 |
-
return f"
|
58 |
|
59 |
-
# Run the agent on all questions
|
60 |
results_log = []
|
61 |
answers_payload = []
|
62 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
63 |
for item in questions_data:
|
64 |
task_id = item.get("task_id")
|
65 |
question_text = item.get("question")
|
66 |
if not task_id or question_text is None:
|
67 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
68 |
continue
|
69 |
try:
|
70 |
submitted_answer = agent(question_text)
|
@@ -81,11 +67,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
81 |
"agent_code": agent_code,
|
82 |
"answers": answers_payload
|
83 |
}
|
84 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
85 |
-
print(status_update)
|
86 |
|
87 |
-
# Submit answers
|
88 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
89 |
try:
|
90 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
91 |
response.raise_for_status()
|
@@ -104,17 +86,14 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
104 |
results_df = pd.DataFrame(results_log)
|
105 |
return status_message, results_df
|
106 |
|
107 |
-
# --- Gradio UI ---
|
108 |
with gr.Blocks() as demo:
|
109 |
gr.Markdown("# SmolAgent Evaluation Runner")
|
110 |
gr.Markdown(
|
111 |
"""
|
112 |
**Instructions:**
|
113 |
-
|
114 |
- Clone and modify this space to improve your agent logic as you see fit.
|
115 |
- Log in to your Hugging Face account with the button below.
|
116 |
- Click 'Run Evaluation & Submit All Answers' to begin.
|
117 |
-
|
118 |
Disclaimer: Submission may take a while depending on the number of questions and agent speed.
|
119 |
"""
|
120 |
)
|
@@ -132,20 +111,17 @@ if __name__ == "__main__":
|
|
132 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
133 |
space_host_startup = os.getenv("SPACE_HOST")
|
134 |
space_id_startup = os.getenv("SPACE_ID")
|
135 |
-
|
136 |
if space_host_startup:
|
137 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
138 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
139 |
else:
|
140 |
print("ℹ️ SPACE_HOST not found (running locally?)")
|
141 |
-
|
142 |
if space_id_startup:
|
143 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
144 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
145 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
146 |
else:
|
147 |
print("ℹ️ SPACE_ID not found")
|
148 |
-
|
149 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
150 |
print("Launching Gradio Interface for SmolAgent Evaluation...")
|
151 |
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from smolagents.models import InferenceClientModel
|
7 |
from smolagents.agents import ToolCallingAgent
|
8 |
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
def create_agent():
|
12 |
+
# Create the model object for Hugging Face inference API
|
13 |
+
model = InferenceClientModel(repo_id="HuggingFaceH4/zephyr-7b-beta")
|
14 |
+
# Compose the agent, registering tool names (do not import them directly)
|
|
|
15 |
agent = ToolCallingAgent(
|
16 |
tools=["wikipedia", "duckduckgo", "web_search"],
|
17 |
+
model=model
|
|
|
18 |
)
|
19 |
return agent
|
20 |
|
|
|
22 |
space_id = os.getenv("SPACE_ID")
|
23 |
if profile:
|
24 |
username = f"{profile.username}"
|
|
|
25 |
else:
|
|
|
26 |
return "Please Login to Hugging Face with the button.", None
|
27 |
|
28 |
api_url = DEFAULT_API_URL
|
29 |
questions_url = f"{api_url}/questions"
|
30 |
submit_url = f"{api_url}/submit"
|
31 |
|
|
|
32 |
try:
|
33 |
agent = create_agent()
|
34 |
except Exception as e:
|
35 |
return f"Error initializing agent: {e}", None
|
36 |
|
37 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
38 |
|
|
|
|
|
39 |
try:
|
40 |
response = requests.get(questions_url, timeout=15)
|
41 |
response.raise_for_status()
|
42 |
questions_data = response.json()
|
43 |
if not questions_data:
|
|
|
44 |
return "Fetched questions list is empty or invalid format.", None
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
+
return f"Error fetching questions: {e}", None
|
47 |
|
|
|
48 |
results_log = []
|
49 |
answers_payload = []
|
|
|
50 |
for item in questions_data:
|
51 |
task_id = item.get("task_id")
|
52 |
question_text = item.get("question")
|
53 |
if not task_id or question_text is None:
|
|
|
54 |
continue
|
55 |
try:
|
56 |
submitted_answer = agent(question_text)
|
|
|
67 |
"agent_code": agent_code,
|
68 |
"answers": answers_payload
|
69 |
}
|
|
|
|
|
70 |
|
|
|
|
|
71 |
try:
|
72 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
73 |
response.raise_for_status()
|
|
|
86 |
results_df = pd.DataFrame(results_log)
|
87 |
return status_message, results_df
|
88 |
|
|
|
89 |
with gr.Blocks() as demo:
|
90 |
gr.Markdown("# SmolAgent Evaluation Runner")
|
91 |
gr.Markdown(
|
92 |
"""
|
93 |
**Instructions:**
|
|
|
94 |
- Clone and modify this space to improve your agent logic as you see fit.
|
95 |
- Log in to your Hugging Face account with the button below.
|
96 |
- Click 'Run Evaluation & Submit All Answers' to begin.
|
|
|
97 |
Disclaimer: Submission may take a while depending on the number of questions and agent speed.
|
98 |
"""
|
99 |
)
|
|
|
111 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
112 |
space_host_startup = os.getenv("SPACE_HOST")
|
113 |
space_id_startup = os.getenv("SPACE_ID")
|
|
|
114 |
if space_host_startup:
|
115 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
116 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
117 |
else:
|
118 |
print("ℹ️ SPACE_HOST not found (running locally?)")
|
|
|
119 |
if space_id_startup:
|
120 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
121 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
122 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
123 |
else:
|
124 |
print("ℹ️ SPACE_ID not found")
|
|
|
125 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
126 |
print("Launching Gradio Interface for SmolAgent Evaluation...")
|
127 |
demo.launch(debug=True, share=False)
|