Spaces:
Sleeping
Sleeping
File size: 39,997 Bytes
807e22d 876f5d0 9706d54 876f5d0 807e22d 9706d54 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 876f5d0 807e22d 66d0554 807e22d 66d0554 9706d54 876f5d0 9706d54 876f5d0 9706d54 66d0554 9706d54 807e22d 66d0554 9706d54 66d0554 9706d54 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 df2fd84 66d0554 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 66d0554 807e22d df2fd84 66d0554 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 807e22d 66d0554 807e22d 66d0554 876f5d0 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 df2fd84 807e22d df2fd84 807e22d df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 807e22d 66d0554 807e22d 66d0554 807e22d 66d0554 807e22d df2fd84 876f5d0 df2fd84 876f5d0 df2fd84 807e22d 66d0554 df2fd84 807e22d 66d0554 df2fd84 807e22d 9706d54 66d0554 9706d54 807e22d 66d0554 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
import os
import logging
import logging.config
from typing import Any
from uuid import uuid4, UUID
import json
import sys
import gradio as gr
from dotenv import load_dotenv
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langgraph.types import RunnableConfig
from pydantic import BaseModel
from pathlib import Path
load_dotenv()
# Check Gradio version and provide guidance
print(f"Gradio version: {gr.__version__}")
# Parse version to check compatibility
try:
version_parts = gr.__version__.split('.')
major_version = int(version_parts[0])
minor_version = int(version_parts[1]) if len(version_parts) > 1 else 0
if major_version < 4:
print("β οΈ WARNING: You're using an older version of Gradio.")
print(" Some features may be limited. Consider upgrading:")
print(" pip install --upgrade gradio>=4.0.0")
elif major_version >= 4:
print("β
Gradio version is compatible with all features.")
except (ValueError, IndexError):
print("Could not parse Gradio version.")
print() # Add spacing
# There are tools set here dependent on environment variables
from graph import graph, weak_model, search_enabled # noqa
FOLLOWUP_QUESTION_NUMBER = 3
TRIM_MESSAGE_LENGTH = 16 # Includes tool messages
USER_INPUT_MAX_LENGTH = 10000 # Characters
# We need the same secret for data persistance
# If you store sensitive data, you should store your secret in .env
BROWSER_STORAGE_SECRET = "itsnosecret"
try:
with open('logging-config.json', 'r') as fh:
config = json.load(fh)
logging.config.dictConfig(config)
except FileNotFoundError:
# Fallback logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_initial_greeting(filepath="greeting_prompt.txt") -> str:
"""
Loads the initial greeting message from a specified text file.
"""
try:
with open(filepath, "r", encoding="utf-8") as f:
return f.read().strip()
except FileNotFoundError:
logger.warning(f"Warning: Prompt file '{filepath}' not found.")
return "Welcome to DIYO! I'm here to help you create amazing DIY projects. What would you like to build today?"
async def chat_fn(user_input: str, history: dict, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
"""
Args:
user_input (str): The user's input message
history (dict): The history of the conversation in gradio
input_graph_state (dict): The current state of the graph. This includes tool call history
uuid (UUID): The unique identifier for the current conversation. This can be used in conjunction with langgraph or for memory
prompt (str): The system prompt
Yields:
str: The output message
dict|Any: The final state of the graph
bool|Any: Whether to trigger follow up questions
"""
try:
logger.info(f"Processing user input: {user_input[:100]}...")
# Initialize input_graph_state if None
if input_graph_state is None:
input_graph_state = {}
input_graph_state["tools_enabled"] = {
"download_website_text": download_website_text_enabled,
"tavily_search_results_json": search_enabled,
}
if prompt:
input_graph_state["prompt"] = prompt
if input_graph_state.get("awaiting_human_input"):
input_graph_state["messages"].append(
ToolMessage(
tool_call_id=input_graph_state.pop("human_assistance_tool_id"),
content=user_input
)
)
input_graph_state["awaiting_human_input"] = False
else:
# New user message
if "messages" not in input_graph_state:
input_graph_state["messages"] = []
input_graph_state["messages"].append(
HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
)
input_graph_state["messages"] = input_graph_state["messages"][-TRIM_MESSAGE_LENGTH:]
config = RunnableConfig(
recursion_limit=20,
run_name="user_chat",
configurable={"thread_id": str(uuid)}
)
output: str = ""
final_state: dict | Any = {}
waiting_output_seq: list[str] = []
async for stream_mode, chunk in graph.astream(
input_graph_state,
config=config,
stream_mode=["values", "messages"],
):
if stream_mode == "values":
final_state = chunk
if chunk.get("messages") and len(chunk["messages"]) > 0:
last_message = chunk["messages"][-1]
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
for msg_tool_call in last_message.tool_calls:
tool_name: str = msg_tool_call['name']
if tool_name == "tavily_search_results_json":
query = msg_tool_call['args']['query']
waiting_output_seq.append(f"π Searching for '{query}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif tool_name == "download_website_text":
url = msg_tool_call['args']['url']
waiting_output_seq.append(f"π₯ Downloading text from '{url}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif tool_name == "human_assistance":
query = msg_tool_call["args"]["query"]
waiting_output_seq.append(f"π€: {query}")
# Save state to resume after user provides input
final_state["awaiting_human_input"] = True
final_state["human_assistance_tool_id"] = msg_tool_call["id"]
# Indicate that human input is needed
yield "\n".join(waiting_output_seq), final_state, True
return # Pause execution, resume in next call
else:
waiting_output_seq.append(f"π§ Running {tool_name}...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif stream_mode == "messages":
msg, metadata = chunk
# Check for the correct node name from your graph
node_name = metadata.get('langgraph_node', '')
if node_name in ["brainstorming_node", "prompt_planning_node", "generate_3d_node", "assistant_node"]:
current_chunk_text = ""
if isinstance(msg.content, str):
current_chunk_text = msg.content
elif isinstance(msg.content, list):
for block in msg.content:
if isinstance(block, dict) and block.get("type") == "text":
current_chunk_text += block.get("text", "")
elif isinstance(block, str):
current_chunk_text += block
if current_chunk_text:
output += current_chunk_text
yield output, gr.skip(), gr.skip()
# Final yield with complete response
yield output + " ", dict(final_state), True
except Exception as e:
logger.exception("Exception occurred in chat_fn")
user_error_message = "There was an error processing your request. Please try again."
yield user_error_message, gr.skip(), False
def clear():
"""Clear the current conversation state"""
return dict(), uuid4()
class FollowupQuestions(BaseModel):
"""Model for langchain to use for structured output for followup questions"""
questions: list[str]
async def populate_followup_questions(end_of_chat_response: bool, messages: dict[str, str], uuid: UUID):
"""
This function gets called a lot due to the asynchronous nature of streaming
Only populate followup questions if streaming has completed and the message is coming from the assistant
"""
if not end_of_chat_response or not messages or len(messages) == 0:
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
# Check if the last message is from assistant
if messages[-1]["role"] != "assistant":
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
try:
config = RunnableConfig(
run_name="populate_followup_questions",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
*messages,
])
if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
logger.warning("Invalid number of followup questions generated")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
buttons.append(
gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
)
return *buttons, False
except Exception as e:
logger.error(f"Error generating followup questions: {e}")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
async def summarize_chat(end_of_chat_response: bool, messages: dict, sidebar_summaries: dict, uuid: UUID):
"""Summarize chat for tab names"""
should_return = (
not end_of_chat_response or
not messages or
len(messages) == 0 or
messages[-1]["role"] != "assistant" or
isinstance(sidebar_summaries, type(lambda x: x)) or
uuid in sidebar_summaries
)
if should_return:
return gr.skip(), gr.skip()
# Filter valid messages
filtered_messages = []
for msg in messages:
if isinstance(msg, dict) and msg.get("content") and msg["content"].strip():
filtered_messages.append(msg)
# If we don't have any valid messages after filtering, provide a default summary
if not filtered_messages:
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "New Chat"
return sidebar_summaries, False
try:
config = RunnableConfig(
run_name="summarize_chat",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
summary_response = await weak_model_with_config.ainvoke([
("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
*filtered_messages,
])
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = summary_response.content[:50] # Limit length
except Exception as e:
logger.error(f"Error summarizing chat: {e}")
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "Chat Session"
return sidebar_summaries, False
async def new_tab(uuid, gradio_graph, messages, tabs, prompt, sidebar_summaries):
"""Create a new chat tab"""
new_uuid = uuid4()
new_graph = {}
# Save current tab if it has content
if messages and len(messages) > 0:
if uuid not in sidebar_summaries:
sidebar_summaries, _ = await summarize_chat(True, messages, sidebar_summaries, uuid)
tabs[uuid] = {
"graph": gradio_graph,
"messages": messages,
"prompt": prompt,
}
# Clear suggestion buttons
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
# Load initial greeting for new chat
greeting_text = load_initial_greeting()
new_chat_messages_for_display = [{"role": "assistant", "content": greeting_text}]
new_prompt = prompt if prompt else "You are a helpful DIY assistant."
return new_uuid, new_graph, new_chat_messages_for_display, tabs, new_prompt, sidebar_summaries, *suggestion_buttons
def switch_tab(selected_uuid, tabs, gradio_graph, uuid, messages, prompt):
"""Switch to a different chat tab"""
try:
# Save current state if there are messages
if messages and len(messages) > 0:
tabs[uuid] = {
"graph": gradio_graph if gradio_graph else {},
"messages": messages,
"prompt": prompt
}
if selected_uuid not in tabs:
logger.error(f"Could not find the selected tab in tabs storage: {selected_uuid}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
selected_tab_state = tabs[selected_uuid]
selected_graph = selected_tab_state.get("graph", {})
selected_messages = selected_tab_state.get("messages", [])
selected_prompt = selected_tab_state.get("prompt", "You are a helpful DIY assistant.")
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
return selected_graph, selected_uuid, selected_messages, tabs, selected_prompt, *suggestion_buttons
except Exception as e:
logger.error(f"Error switching tabs: {e}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
"""Delete a chat tab"""
output_messages = gr.skip()
# If deleting the current tab, clear the chatbot
if current_chat_uuid == selected_uuid:
output_messages = []
# Remove from storage
if selected_uuid in tabs:
del tabs[selected_uuid]
if selected_uuid in sidebar_summaries:
del sidebar_summaries[selected_uuid]
return sidebar_summaries, tabs, output_messages
def submit_edit_tab(selected_uuid, sidebar_summaries, text):
"""Submit edited tab name"""
if text.strip():
sidebar_summaries[selected_uuid] = text.strip()[:50] # Limit length
return sidebar_summaries, ""
def load_mesh(mesh_file_name):
"""Load a 3D mesh file"""
return mesh_file_name
def get_sorted_3d_model_examples():
"""Get sorted list of 3D model examples"""
examples_dir = Path("./generated_3d_models")
# Create directory if it doesn't exist
examples_dir.mkdir(exist_ok=True)
if not examples_dir.exists():
return []
# Get all 3D model files with desired extensions
model_files = [
file for file in examples_dir.glob("*")
if file.suffix.lower() in {".obj", ".glb", ".gltf"}
]
# Sort files by creation time (latest first)
try:
sorted_files = sorted(
model_files,
key=lambda x: x.stat().st_ctime,
reverse=True
)
except (OSError, AttributeError):
# Fallback to name sorting if stat fails
sorted_files = sorted(model_files, key=lambda x: x.name, reverse=True)
# Convert to format [[path1], [path2], ...]
return [[str(file)] for file in sorted_files]
CSS = """
footer {visibility: hidden}
.followup-question-button {font-size: 12px }
.chat-tab {
font-size: 12px;
padding-inline: 0;
}
.chat-tab.active {
background-color: #654343;
}
#new-chat-button { background-color: #0f0f11; color: white; }
.tab-button-control {
min-width: 0;
padding-left: 0;
padding-right: 0;
}
.sidebar-collapsed {
display: none !important;
}
.sidebar-replacement {
background-color: #f8f9fa;
border-left: 1px solid #dee2e6;
padding: 10px;
min-height: 400px;
}
.wrap.sidebar-parent {
min-height: 2400px !important;
height: 2400px !important;
}
#main-app {
height: 4600px;
overflow-y: auto;
padding-top: 20px;
}
"""
TRIGGER_CHATINTERFACE_BUTTON = """
function triggerChatButtonClick() {
const chatTextbox = document.getElementById("chat-textbox");
if (!chatTextbox) {
console.error("Error: Could not find element with id 'chat-textbox'");
return;
}
const button = chatTextbox.querySelector("button");
if (!button) {
console.error("Error: No button found inside the chat-textbox element");
return;
}
button.click();
}"""
if __name__ == "__main__":
logger.info("Starting the DIYO interface")
# Check if BrowserState is available
has_browser_state = hasattr(gr, 'BrowserState')
logger.info(f"BrowserState available: {has_browser_state}")
if not has_browser_state:
print("π Note: Using session-only state (data won't persist after refresh)")
print(" For data persistence, upgrade to Gradio 4.0+")
logger.warning("BrowserState not available in this Gradio version. Using regular State instead.")
logger.warning("To use BrowserState, upgrade Gradio: pip install gradio>=4.0.0")
else:
print("πΎ Using persistent browser state (data persists after refresh)")
print() # Add spacing
with gr.Blocks(title="DIYO - DIY Assistant", fill_height=True, css=CSS, elem_id="main-app") as demo:
# State management - Use BrowserState if available, otherwise regular State
is_new_user_for_greeting = gr.State(True)
if has_browser_state:
current_prompt_state = gr.BrowserState(
value="You are a helpful DIY assistant.",
storage_key="current_prompt_state",
secret=BROWSER_STORAGE_SECRET,
)
current_uuid_state = gr.BrowserState(
value=uuid4,
storage_key="current_uuid_state",
secret=BROWSER_STORAGE_SECRET,
)
current_langgraph_state = gr.BrowserState(
value=dict,
storage_key="current_langgraph_state",
secret=BROWSER_STORAGE_SECRET,
)
sidebar_names_state = gr.BrowserState(
value=dict,
storage_key="sidebar_names_state",
secret=BROWSER_STORAGE_SECRET,
)
offloaded_tabs_data_storage = gr.BrowserState(
value=dict,
storage_key="offloaded_tabs_data_storage",
secret=BROWSER_STORAGE_SECRET,
)
chatbot_message_storage = gr.BrowserState(
value=list,
storage_key="chatbot_message_storage",
secret=BROWSER_STORAGE_SECRET,
)
else:
# Fallback to regular State
current_prompt_state = gr.State("You are a helpful DIY assistant.")
current_uuid_state = gr.State(uuid4())
current_langgraph_state = gr.State({})
sidebar_names_state = gr.State({})
offloaded_tabs_data_storage = gr.State({})
chatbot_message_storage = gr.State([])
end_of_assistant_response_state = gr.State(False)
# Header
with gr.Row(elem_classes="header-margin"):
gr.Markdown("""
<div style="display: flex; align-items: center; justify-content: center; text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 20px; color: white; box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1>π§ DIYO - Your DIY Assistant π οΈ</h1>
</div>
""")
# System prompt input
with gr.Row():
prompt_textbox = gr.Textbox(
label="System Prompt",
value="You are a helpful DIY assistant.",
show_label=True,
interactive=True,
placeholder="Enter custom system prompt..."
)
# Tool settings
with gr.Row():
checkbox_search_enabled = gr.Checkbox(
value=True,
label="Enable web search",
show_label=True,
visible=search_enabled,
scale=1,
)
checkbox_download_website_text = gr.Checkbox(
value=True,
show_label=True,
label="Enable downloading text from URLs",
scale=1,
)
# 3D Model display and controls
with gr.Row():
with gr.Column(scale=2):
model_3d_output = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model Viewer",
height=400
)
with gr.Column(scale=1):
model_3d_upload_button = gr.UploadButton(
"π Upload 3D Model (.obj, .glb, .gltf)",
file_types=[".obj", ".glb", ".gltf"],
)
model_3d_upload_button.upload(
fn=load_mesh,
inputs=model_3d_upload_button,
outputs=model_3d_output
)
# Examples with error handling and version compatibility
try:
examples_list = get_sorted_3d_model_examples()
if examples_list:
examples_kwargs = {
"label": "Example 3D Models",
"examples": examples_list,
"inputs": model_3d_upload_button,
"outputs": model_3d_output,
"fn": load_mesh,
}
# Check if cache_examples parameter is supported
try:
init_params = gr.Examples.__init__.__code__.co_varnames
if 'cache_examples' in init_params:
examples_kwargs["cache_examples"] = False
except Exception:
# Parameter not supported, skip it
pass
gr.Examples(**examples_kwargs)
except Exception as e:
logger.error(f"Error setting up 3D model examples: {e}")
# Chat interface setup - with compatibility checks
with gr.Row():
multimodal = False
# Check if MultimodalTextbox is available
if hasattr(gr, 'MultimodalTextbox') and multimodal:
textbox_component = gr.MultimodalTextbox
else:
textbox_component = gr.Textbox
multimodal = False # Force to False if not available
textbox_kwargs = {
"show_label": False,
"label": "Message",
"placeholder": "Type a message...",
"scale": 1,
"elem_id": "chat-textbox",
"lines": 1,
}
# Check if newer textbox parameters are supported
try:
init_params = textbox_component.__init__.__code__.co_varnames
if 'autofocus' in init_params:
textbox_kwargs["autofocus"] = True
if 'submit_btn' in init_params:
textbox_kwargs["submit_btn"] = True
if 'stop_btn' in init_params:
textbox_kwargs["stop_btn"] = True
except Exception as e:
logger.warning(f"Error checking textbox parameters: {e}")
# Keep minimal parameters as fallback
textbox = textbox_component(**textbox_kwargs)
# Check if newer Chatbot parameters are supported
chatbot_kwargs = {
"height": 400,
"elem_classes": "main-chatbox"
}
# Add parameters that might not be available in older versions
try:
# Check parameter availability without creating test instance
init_params = gr.Chatbot.__init__.__code__.co_varnames
# Always try to set type="messages" to avoid the deprecation warning
if 'type' in init_params:
chatbot_kwargs["type"] = "messages"
logger.info("Using 'messages' type for chatbot")
else:
logger.warning("Chatbot 'type' parameter not supported, using default")
# Check if 'show_copy_button' parameter is supported
if 'show_copy_button' in init_params:
chatbot_kwargs["show_copy_button"] = True
# Check if 'scale' parameter is supported
if 'scale' in init_params:
chatbot_kwargs["scale"] = 0
except Exception as e:
logger.warning(f"Error checking Chatbot parameters: {e}")
# Use minimal parameters as fallback, but try to set type to avoid warning
chatbot_kwargs = {"height": 400}
try:
chatbot_kwargs["type"] = "messages"
except:
pass
chatbot = gr.Chatbot(**chatbot_kwargs)
# Follow-up question buttons
with gr.Row():
followup_question_buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
btn = gr.Button(f"Button {i+1}", visible=False, elem_classes="followup-question-button")
followup_question_buttons.append(btn)
# Tab management state
tab_edit_uuid_state = gr.State("")
# Update prompt state when changed
prompt_textbox.change(
fn=lambda prompt: prompt,
inputs=[prompt_textbox],
outputs=[current_prompt_state]
)
# Chat History Sidebar (using simple approach for compatibility)
with gr.Column():
gr.Markdown("### Chat History")
@gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
# Ensure sidebar_summaries is a dict
if not isinstance(sidebar_summaries, dict):
sidebar_summaries = {}
# Current tab button
current_tab_button_text = sidebar_summaries.get(active_uuid, "Current Chat")
if active_uuid not in tabs or not tabs[active_uuid]:
unique_id = f"current-tab-{active_uuid}-{uuid4()}"
gr.Button(
current_tab_button_text,
elem_classes=["chat-tab", "active"],
elem_id=unique_id
)
# Historical tabs
for chat_uuid, tab in reversed(tabs.items()):
if not tab: # Skip empty tabs
continue
elem_classes = ["chat-tab"]
if chat_uuid == active_uuid:
elem_classes.append("active")
button_uuid_state = gr.State(chat_uuid)
with gr.Row():
# Delete button
clear_tab_button = gr.Button(
"π",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"delete-btn-{chat_uuid}-{uuid4()}"
)
clear_tab_button.click(
fn=delete_tab,
inputs=[
current_uuid_state,
button_uuid_state,
sidebar_names_state,
offloaded_tabs_data_storage
],
outputs=[
sidebar_names_state,
offloaded_tabs_data_storage,
chatbot
]
)
# Tab name/edit functionality
chat_button_text = sidebar_summaries.get(chat_uuid, str(chat_uuid)[:8])
if chat_uuid != tab_uuid_edit:
# Edit button
set_edit_tab_button = gr.Button(
"β",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"edit-btn-{chat_uuid}-{uuid4()}"
)
set_edit_tab_button.click(
fn=lambda x: x,
inputs=[button_uuid_state],
outputs=[tab_edit_uuid_state]
)
# Tab button
chat_tab_button = gr.Button(
chat_button_text,
elem_id=f"chat-{chat_uuid}-{uuid4()}",
elem_classes=elem_classes,
scale=2
)
chat_tab_button.click(
fn=switch_tab,
inputs=[
button_uuid_state,
offloaded_tabs_data_storage,
current_langgraph_state,
current_uuid_state,
chatbot,
prompt_textbox
],
outputs=[
current_langgraph_state,
current_uuid_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
*followup_question_buttons
]
)
else:
# Edit textbox
chat_tab_text = gr.Textbox(
chat_button_text,
scale=2,
interactive=True,
show_label=False,
elem_id=f"edit-text-{chat_uuid}-{uuid4()}"
)
chat_tab_text.submit(
fn=submit_edit_tab,
inputs=[
button_uuid_state,
sidebar_names_state,
chat_tab_text
],
outputs=[
sidebar_names_state,
tab_edit_uuid_state
]
)
# New chat button
new_chat_button = gr.Button("β New Chat", elem_id="new-chat-button")
# Clear functionality
chatbot.clear(
fn=clear,
outputs=[current_langgraph_state, current_uuid_state]
)
# Main chat interface - with compatibility checks
chat_interface_kwargs = {
"chatbot": chatbot,
"fn": chat_fn,
"additional_inputs": [
current_langgraph_state,
current_uuid_state,
prompt_textbox,
checkbox_search_enabled,
checkbox_download_website_text,
],
"additional_outputs": [
current_langgraph_state,
end_of_assistant_response_state
],
"textbox": textbox,
}
# Check if newer ChatInterface parameters are supported
try:
init_params = gr.ChatInterface.__init__.__code__.co_varnames
# Check if 'type' parameter is supported
if 'type' in init_params:
chat_interface_kwargs["type"] = "messages"
# Check if 'multimodal' parameter is supported
if 'multimodal' in init_params:
chat_interface_kwargs["multimodal"] = multimodal
except Exception as e:
logger.warning(f"Error checking ChatInterface parameters: {e}")
# Keep minimal parameters as fallback
chat_interface = gr.ChatInterface(**chat_interface_kwargs)
# New chat button functionality
new_chat_button.click(
new_tab,
inputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
],
outputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
*followup_question_buttons,
]
)
# Follow-up button functionality
def click_followup_button(btn):
buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
return btn, *buttons
for btn in followup_question_buttons:
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[
chat_interface.textbox,
*followup_question_buttons
]
).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)
# Event handlers for chatbot changes - with compatibility checks
def setup_change_handler(fn, inputs, outputs, trigger_mode=None):
"""Helper function to set up change handlers with optional trigger_mode"""
try:
# Get the change method's parameter names
change_params = chatbot.change.__code__.co_varnames
if trigger_mode and 'trigger_mode' in change_params:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs, trigger_mode=trigger_mode)
else:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as e:
logger.warning(f"Error setting up change handler: {e}")
# Fallback to basic change handler
try:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as fallback_error:
logger.error(f"Failed to set up change handler: {fallback_error}")
return None
setup_change_handler(
fn=populate_followup_questions,
inputs=[
end_of_assistant_response_state,
chatbot,
current_uuid_state
],
outputs=[
*followup_question_buttons,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=summarize_chat,
inputs=[
end_of_assistant_response_state,
chatbot,
sidebar_names_state,
current_uuid_state
],
outputs=[
sidebar_names_state,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=lambda x: x,
inputs=[chatbot],
outputs=[chatbot_message_storage],
trigger_mode="always_last"
)
# Load event handlers - only add these if we have BrowserState
if has_browser_state:
@demo.load(
inputs=[is_new_user_for_greeting, chatbot_message_storage],
outputs=[chatbot_message_storage, is_new_user_for_greeting]
)
def handle_initial_greeting_load(current_is_new_user_flag: bool, existing_chat_history: list):
"""Handle initial greeting when the app loads"""
if current_is_new_user_flag:
greeting_message_text = load_initial_greeting()
greeting_entry = {"role": "assistant", "content": greeting_message_text}
if not isinstance(existing_chat_history, list):
existing_chat_history = []
updated_chat_history = [greeting_entry] + existing_chat_history
updated_is_new_user_flag = False
logger.info("Greeting added for new user.")
return updated_chat_history, updated_is_new_user_flag
else:
logger.info("Not a new user or already greeted.")
if not isinstance(existing_chat_history, list):
existing_chat_history = []
return existing_chat_history, False
@demo.load(inputs=[chatbot_message_storage], outputs=[chatbot])
def load_messages(messages):
"""Load stored messages into chatbot"""
if isinstance(messages, list):
return messages
return []
@demo.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
def load_prompt(current_prompt):
"""Load stored prompt"""
if current_prompt:
return current_prompt
return "You are a helpful DIY assistant."
else:
# For regular State, add a simple greeting on load
@demo.load(outputs=[chatbot])
def load_initial_greeting():
"""Load initial greeting for users without BrowserState"""
greeting_text = load_initial_greeting()
return [{"role": "assistant", "content": greeting_text}]
# Launch the application
demo.launch(debug=True, share=True) |