Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PIL.Image as Image
|
3 |
+
import io
|
4 |
+
import base64
|
5 |
+
import json
|
6 |
+
from typing import Union
|
7 |
+
|
8 |
+
def analyze_image(image: Image.Image) -> str:
|
9 |
+
"""
|
10 |
+
Analyze an image and return detailed information about it.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
image: The image to analyze (can be base64 string or file upload)
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
str: JSON string with image analysis including dimensions, format, mode, and orientation
|
17 |
+
"""
|
18 |
+
if image is None:
|
19 |
+
return json.dumps({"error": "No image provided"})
|
20 |
+
|
21 |
+
try:
|
22 |
+
# Get image properties
|
23 |
+
width, height = image.size
|
24 |
+
format_type = image.format or "Unknown"
|
25 |
+
mode = image.mode
|
26 |
+
orientation = "Portrait" if height > width else "Landscape" if width > height else "Square"
|
27 |
+
|
28 |
+
# Calculate aspect ratio
|
29 |
+
aspect_ratio = round(width / height, 2) if height > 0 else 0
|
30 |
+
|
31 |
+
# Get color information
|
32 |
+
colors = image.getcolors(maxcolors=256*256*256)
|
33 |
+
dominant_colors = len(colors) if colors else "Many"
|
34 |
+
|
35 |
+
analysis = {
|
36 |
+
"dimensions": {"width": width, "height": height},
|
37 |
+
"format": format_type,
|
38 |
+
"mode": mode,
|
39 |
+
"orientation": orientation,
|
40 |
+
"aspect_ratio": aspect_ratio,
|
41 |
+
"approximate_colors": dominant_colors,
|
42 |
+
"file_info": f"{width}x{height} {format_type} image in {mode} mode"
|
43 |
+
}
|
44 |
+
|
45 |
+
return json.dumps(analysis, indent=2)
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
return json.dumps({"error": f"Error analyzing image: {str(e)}"})
|
49 |
+
|
50 |
+
def get_image_orientation(image: Image.Image) -> str:
|
51 |
+
"""
|
52 |
+
Determine if an image is portrait, landscape, or square.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
image: The image to check orientation
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
str: "Portrait", "Landscape", or "Square"
|
59 |
+
"""
|
60 |
+
if image is None:
|
61 |
+
return "No image provided"
|
62 |
+
|
63 |
+
try:
|
64 |
+
width, height = image.size
|
65 |
+
if height > width:
|
66 |
+
return "Portrait"
|
67 |
+
elif width > height:
|
68 |
+
return "Landscape"
|
69 |
+
else:
|
70 |
+
return "Square"
|
71 |
+
except Exception as e:
|
72 |
+
return f"Error: {str(e)}"
|
73 |
+
|
74 |
+
def count_colors(image: Image.Image) -> str:
|
75 |
+
"""
|
76 |
+
Count the approximate number of unique colors in an image.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
image: The image to analyze for color count
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
str: Description of color count and dominant color information
|
83 |
+
"""
|
84 |
+
if image is None:
|
85 |
+
return "No image provided"
|
86 |
+
|
87 |
+
try:
|
88 |
+
# Convert to RGB if not already
|
89 |
+
if image.mode != 'RGB':
|
90 |
+
image = image.convert('RGB')
|
91 |
+
|
92 |
+
# Get colors (limit to prevent memory issues)
|
93 |
+
colors = image.getcolors(maxcolors=256*256*256)
|
94 |
+
|
95 |
+
if colors is None:
|
96 |
+
return "Image has more than 16.7 million unique colors"
|
97 |
+
|
98 |
+
# Sort by frequency
|
99 |
+
colors.sort(key=lambda x: x[0], reverse=True)
|
100 |
+
|
101 |
+
# Get top 3 colors
|
102 |
+
top_colors = colors[:3]
|
103 |
+
color_info = []
|
104 |
+
|
105 |
+
for count, color in top_colors:
|
106 |
+
if isinstance(color, tuple) and len(color) >= 3:
|
107 |
+
r, g, b = color[:3]
|
108 |
+
hex_color = f"#{r:02x}{g:02x}{b:02x}"
|
109 |
+
percentage = round((count / sum(c[0] for c in colors)) * 100, 1)
|
110 |
+
color_info.append(f"RGB{color} ({hex_color}) - {percentage}%")
|
111 |
+
|
112 |
+
result = f"Total unique colors: {len(colors)}\n"
|
113 |
+
result += "Top colors by frequency:\n" + "\n".join(color_info)
|
114 |
+
|
115 |
+
return result
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
return f"Error analyzing colors: {str(e)}"
|
119 |
+
|
120 |
+
def extract_text_info(image: Image.Image) -> str:
|
121 |
+
"""
|
122 |
+
Extract basic information about text-like content in an image.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
image: The image to analyze for text content
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
str: Basic information about potential text content
|
129 |
+
"""
|
130 |
+
if image is None:
|
131 |
+
return "No image provided"
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Convert to grayscale for analysis
|
135 |
+
gray = image.convert('L')
|
136 |
+
|
137 |
+
# Get image statistics
|
138 |
+
extrema = gray.getextrema()
|
139 |
+
|
140 |
+
# Simple heuristics for text detection
|
141 |
+
contrast = extrema[1] - extrema[0]
|
142 |
+
|
143 |
+
analysis = {
|
144 |
+
"image_mode": image.mode,
|
145 |
+
"grayscale_range": f"{extrema[0]} to {extrema[1]}",
|
146 |
+
"contrast_level": "High" if contrast > 200 else "Medium" if contrast > 100 else "Low",
|
147 |
+
"potential_text": "Likely contains text" if contrast > 150 else "May contain text" if contrast > 100 else "Unlikely to contain text",
|
148 |
+
"note": "This is a basic analysis. For proper OCR, use specialized text extraction tools."
|
149 |
+
}
|
150 |
+
|
151 |
+
return json.dumps(analysis, indent=2)
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
return f"Error analyzing for text: {str(e)}"
|
155 |
+
|
156 |
+
# Create the Gradio interface
|
157 |
+
with gr.Blocks(title="Image Analysis MCP Server") as demo:
|
158 |
+
gr.Markdown("""
|
159 |
+
# Image Analysis MCP Server
|
160 |
+
|
161 |
+
This Gradio app serves as an MCP server that can analyze images sent from Claude or other MCP clients.
|
162 |
+
|
163 |
+
**Available Tools:**
|
164 |
+
- `analyze_image`: Get comprehensive image analysis (dimensions, format, colors, etc.)
|
165 |
+
- `get_image_orientation`: Check if image is portrait, landscape, or square
|
166 |
+
- `count_colors`: Analyze color information and dominant colors
|
167 |
+
- `extract_text_info`: Basic analysis for potential text content
|
168 |
+
|
169 |
+
**Usage with Claude Desktop:**
|
170 |
+
1. Deploy this to HuggingFace Spaces
|
171 |
+
2. Add the MCP configuration to Claude Desktop
|
172 |
+
3. Send images to Claude and ask it to analyze them using these tools
|
173 |
+
""")
|
174 |
+
|
175 |
+
# Create interface for each function (these will be exposed as MCP tools)
|
176 |
+
with gr.Tab("Image Analysis"):
|
177 |
+
with gr.Row():
|
178 |
+
img_input1 = gr.Image(type="pil", label="Upload Image")
|
179 |
+
analysis_output = gr.JSON(label="Analysis Result")
|
180 |
+
analyze_btn = gr.Button("Analyze Image")
|
181 |
+
analyze_btn.click(analyze_image, inputs=[img_input1], outputs=[analysis_output])
|
182 |
+
|
183 |
+
with gr.Tab("Orientation Check"):
|
184 |
+
with gr.Row():
|
185 |
+
img_input2 = gr.Image(type="pil", label="Upload Image")
|
186 |
+
orientation_output = gr.Textbox(label="Orientation")
|
187 |
+
orientation_btn = gr.Button("Check Orientation")
|
188 |
+
orientation_btn.click(get_image_orientation, inputs=[img_input2], outputs=[orientation_output])
|
189 |
+
|
190 |
+
with gr.Tab("Color Analysis"):
|
191 |
+
with gr.Row():
|
192 |
+
img_input3 = gr.Image(type="pil", label="Upload Image")
|
193 |
+
color_output = gr.Textbox(label="Color Analysis", lines=10)
|
194 |
+
color_btn = gr.Button("Analyze Colors")
|
195 |
+
color_btn.click(count_colors, inputs=[img_input3], outputs=[color_output])
|
196 |
+
|
197 |
+
with gr.Tab("Text Detection"):
|
198 |
+
with gr.Row():
|
199 |
+
img_input4 = gr.Image(type="pil", label="Upload Image")
|
200 |
+
text_output = gr.JSON(label="Text Analysis")
|
201 |
+
text_btn = gr.Button("Analyze for Text")
|
202 |
+
text_btn.click(extract_text_info, inputs=[img_input4], outputs=[text_output])
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
# Launch with MCP server enabled
|
206 |
+
demo.launch(mcp_server=True, share=True)
|