File size: 14,071 Bytes
72e442e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a600d7fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "import json \n",
    "with open('metadata.jsonl', 'r') as f: \n",
    "    json_list = list(f)\n",
    "\n",
    "json_QA = []\n",
    "for json_str in json_list: \n",
    "    json_data = json.loads(json_str)\n",
    "    json_QA.append(json_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fa5d8eb8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================================\n",
      "Task ID: 853c8244-429e-46ca-89f2-addf40dfb2bd\n",
      "Question: In the 2015 Metropolitan Museum of Art exhibition titled after the Chinese zodiac animal of 2015, how many of the \"twelve animals of the Chinese zodiac\" have a hand visible?\n",
      "Level: 2\n",
      "Final Answer: 11\n",
      "Annotator Metadata: \n",
      "  β”œβ”€β”€ Steps: \n",
      "  β”‚      β”œβ”€β”€ 1. Search \"2015 Chinese zodiac animal\" on Google search.\n",
      "  β”‚      β”œβ”€β”€ 2. Note the animal (ram).\n",
      "  β”‚      β”œβ”€β”€ 3. Search \"Metropolitan Museum of Art\" on Google search.\n",
      "  β”‚      β”œβ”€β”€ 4. Open the Metropolitan Museum of Art website.\n",
      "  β”‚      β”œβ”€β”€ 5. Click \"Exhibitions\" under \"Exhibitions and Events\" \n",
      "  β”‚      β”œβ”€β”€ 6. Click \"Past\".\n",
      "  β”‚      β”œβ”€β”€ 7. Set the year to 2015.\n",
      "  β”‚      β”œβ”€β”€ 8. Scroll to find the exhibit mentioning rams and click \"Celebration of the Year of the Ram\".\n",
      "  β”‚      β”œβ”€β”€ 9. Click \"View All Objects\".\n",
      "  β”‚      β”œβ”€β”€ 10. Click \"Twelve animals of the Chinese zodiac\" to open the image.\n",
      "  β”‚      β”œβ”€β”€ 11. Count how many have a visible hand.\n",
      "  β”œβ”€β”€ Number of steps: 11\n",
      "  β”œβ”€β”€ How long did this take?: 10 minutes\n",
      "  β”œβ”€β”€ Tools:\n",
      "  β”‚      β”œβ”€β”€ 1. Web browser\n",
      "  β”‚      β”œβ”€β”€ 2. Search engine\n",
      "  β”‚      β”œβ”€β”€ 3. Image recognition tools\n",
      "  └── Number of tools: 3\n",
      "==================================================\n"
     ]
    }
   ],
   "source": [
    "import random\n",
    "random_samples = random.sample(json_QA, 1)\n",
    "for sample in random_samples:\n",
    "    print(\"=\" * 50)\n",
    "    print(f\"Task ID: {sample['task_id']}\")\n",
    "    print(f\"Question: {sample['Question']}\")\n",
    "    print(f\"Level: {sample['Level']}\")\n",
    "    print(f\"Final Answer: {sample['Final answer']}\")\n",
    "    print(f\"Annotator Metadata: \")\n",
    "    print(f\"  β”œβ”€β”€ Steps: \")\n",
    "    for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
    "        print(f\"  β”‚      β”œβ”€β”€ {step}\")\n",
    "    print(f\"  β”œβ”€β”€ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
    "    print(f\"  β”œβ”€β”€ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
    "    print(f\"  β”œβ”€β”€ Tools:\")\n",
    "    for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
    "        print(f\"  β”‚      β”œβ”€β”€ {tool}\")\n",
    "    print(f\"  └── Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
    "print(\"=\" * 50)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "05076516",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\franc\\repos\\gaia-agent\\gaia-agent\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "c:\\Users\\franc\\repos\\gaia-agent\\gaia-agent\\.venv\\Lib\\site-packages\\huggingface_hub\\file_download.py:143: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\franc\\.cache\\huggingface\\hub\\models--sentence-transformers--all-mpnet-base-v2. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
      "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
      "  warnings.warn(message)\n",
      "Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better performance, install the package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from langchain_huggingface import HuggingFaceEmbeddings\n",
    "from langchain_community.vectorstores import SupabaseVectorStore\n",
    "from supabase.client import Client, create_client\n",
    "\n",
    "\n",
    "load_dotenv()\n",
    "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") #  dim=768\n",
    "\n",
    "supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
    "supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
    "supabase: Client = create_client(supabase_url, supabase_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "aa1402e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.schema import Document\n",
    "docs = []\n",
    "cnt = 0 \n",
    "for sample in json_QA:\n",
    "    content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
    "    doc = {\n",
    "        \"id\" : cnt,\n",
    "        \"content\" : content,\n",
    "        \"metadata\" : {\n",
    "            \"source\" : sample['task_id']\n",
    "        },\n",
    "        \"embedding\" : embeddings.embed_query(content),\n",
    "    }\n",
    "    docs.append(doc)\n",
    "    cnt += 1\n",
    "\n",
    "# upload the documents to the vector database\n",
    "try:\n",
    "    response = (\n",
    "        supabase.table(\"documents\")\n",
    "        .insert(docs)\n",
    "        .execute()\n",
    "    )\n",
    "except Exception as exception:\n",
    "    print(\"Error inserting data into Supabase:\", exception)\n",
    "\n",
    "# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
    "# import pandas as pd\n",
    "# df = pd.DataFrame(docs)\n",
    "# df.to_csv('supabase_docs.csv',index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "9aa7eb5e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# add items to vector database\n",
    "vector_store = SupabaseVectorStore(\n",
    "    client=supabase,\n",
    "    embedding= embeddings,\n",
    "    table_name=\"documents\",\n",
    "    query_name=\"match_documents_langchain\",\n",
    ")\n",
    "retriever = vector_store.as_retriever()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9eecafd1",
   "metadata": {},
   "outputs": [],
   "source": [
    "query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
    "# matched_docs = vector_store.similarity_search(query, k=2)\n",
    "docs = retriever.invoke(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "ff917840",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "docs[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "01c8f337",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "List of tools used in all samples:\n",
      "Total number of tools used: 83\n",
      "  β”œβ”€β”€ web browser: 107\n",
      "  β”œβ”€β”€ image recognition tools (to identify and parse a figure with three axes): 1\n",
      "  β”œβ”€β”€ search engine: 101\n",
      "  β”œβ”€β”€ calculator: 34\n",
      "  β”œβ”€β”€ unlambda compiler (optional): 1\n",
      "  β”œβ”€β”€ a web browser.: 2\n",
      "  β”œβ”€β”€ a search engine.: 2\n",
      "  β”œβ”€β”€ a calculator.: 1\n",
      "  β”œβ”€β”€ microsoft excel: 5\n",
      "  β”œβ”€β”€ google search: 1\n",
      "  β”œβ”€β”€ ne: 9\n",
      "  β”œβ”€β”€ pdf access: 7\n",
      "  β”œβ”€β”€ file handling: 2\n",
      "  β”œβ”€β”€ python: 3\n",
      "  β”œβ”€β”€ image recognition tools: 12\n",
      "  β”œβ”€β”€ jsonld file access: 1\n",
      "  β”œβ”€β”€ video parsing: 1\n",
      "  β”œβ”€β”€ python compiler: 1\n",
      "  β”œβ”€β”€ video recognition tools: 3\n",
      "  β”œβ”€β”€ pdf viewer: 7\n",
      "  β”œβ”€β”€ microsoft excel / google sheets: 3\n",
      "  β”œβ”€β”€ word document access: 1\n",
      "  β”œβ”€β”€ tool to extract text from images: 1\n",
      "  β”œβ”€β”€ a word reversal tool / script: 1\n",
      "  β”œβ”€β”€ counter: 1\n",
      "  β”œβ”€β”€ excel: 3\n",
      "  β”œβ”€β”€ image recognition: 5\n",
      "  β”œβ”€β”€ color recognition: 3\n",
      "  β”œβ”€β”€ excel file access: 3\n",
      "  β”œβ”€β”€ xml file access: 1\n",
      "  β”œβ”€β”€ access to the internet archive, web.archive.org: 1\n",
      "  β”œβ”€β”€ text processing/diff tool: 1\n",
      "  β”œβ”€β”€ gif parsing tools: 1\n",
      "  β”œβ”€β”€ a web browser: 7\n",
      "  β”œβ”€β”€ a search engine: 7\n",
      "  β”œβ”€β”€ a speech-to-text tool: 2\n",
      "  β”œβ”€β”€ code/data analysis tools: 1\n",
      "  β”œβ”€β”€ audio capability: 2\n",
      "  β”œβ”€β”€ pdf reader: 1\n",
      "  β”œβ”€β”€ markdown: 1\n",
      "  β”œβ”€β”€ a calculator: 5\n",
      "  β”œβ”€β”€ access to wikipedia: 3\n",
      "  β”œβ”€β”€ image recognition/ocr: 3\n",
      "  β”œβ”€β”€ google translate access: 1\n",
      "  β”œβ”€β”€ ocr: 4\n",
      "  β”œβ”€β”€ bass note data: 1\n",
      "  β”œβ”€β”€ text editor: 1\n",
      "  β”œβ”€β”€ xlsx file access: 1\n",
      "  β”œβ”€β”€ powerpoint viewer: 1\n",
      "  β”œβ”€β”€ csv file access: 1\n",
      "  β”œβ”€β”€ calculator (or use excel): 1\n",
      "  β”œβ”€β”€ computer algebra system: 1\n",
      "  β”œβ”€β”€ video processing software: 1\n",
      "  β”œβ”€β”€ audio processing software: 1\n",
      "  β”œβ”€β”€ computer vision: 1\n",
      "  β”œβ”€β”€ google maps: 1\n",
      "  β”œβ”€β”€ access to excel files: 1\n",
      "  β”œβ”€β”€ calculator (or ability to count): 1\n",
      "  β”œβ”€β”€ a file interface: 3\n",
      "  β”œβ”€β”€ a python ide: 1\n",
      "  β”œβ”€β”€ spreadsheet editor: 1\n",
      "  β”œβ”€β”€ tools required: 1\n",
      "  β”œβ”€β”€ b browser: 1\n",
      "  β”œβ”€β”€ image recognition and processing tools: 1\n",
      "  β”œβ”€β”€ computer vision or ocr: 1\n",
      "  β”œβ”€β”€ c++ compiler: 1\n",
      "  β”œβ”€β”€ access to google maps: 1\n",
      "  β”œβ”€β”€ youtube player: 1\n",
      "  β”œβ”€β”€ natural language processor: 1\n",
      "  β”œβ”€β”€ graph interaction tools: 1\n",
      "  β”œβ”€β”€ bablyonian cuniform -> arabic legend: 1\n",
      "  β”œβ”€β”€ access to youtube: 1\n",
      "  β”œβ”€β”€ image search tools: 1\n",
      "  β”œβ”€β”€ calculator or counting function: 1\n",
      "  β”œβ”€β”€ a speech-to-text audio processing tool: 1\n",
      "  β”œβ”€β”€ access to academic journal websites: 1\n",
      "  β”œβ”€β”€ pdf reader/extracter: 1\n",
      "  β”œβ”€β”€ rubik's cube model: 1\n",
      "  β”œβ”€β”€ wikipedia: 1\n",
      "  β”œβ”€β”€ video capability: 1\n",
      "  β”œβ”€β”€ image processing tools: 1\n",
      "  β”œβ”€β”€ age recognition software: 1\n",
      "  β”œβ”€β”€ youtube: 1\n"
     ]
    }
   ],
   "source": [
    "# list of the tools used in all the samples\n",
    "from collections import Counter, OrderedDict\n",
    "\n",
    "tools = []\n",
    "for sample in json_QA:\n",
    "    for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
    "        tool = tool[2:].strip().lower()\n",
    "        if tool.startswith(\"(\"):\n",
    "            tool = tool[11:].strip()\n",
    "        tools.append(tool)\n",
    "tools_counter = OrderedDict(Counter(tools))\n",
    "print(\"List of tools used in all samples:\")\n",
    "print(\"Total number of tools used:\", len(tools_counter))\n",
    "for tool, count in tools_counter.items():\n",
    "    print(f\"  β”œβ”€β”€ {tool}: {count}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}