Spaces:
Runtime error
Runtime error
Commit
·
f965c67
1
Parent(s):
8fb4bb0
Rename utils to utils.py
Browse files
utils
DELETED
@@ -1,588 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from diffusers.pipelines import FluxPipeline
|
4 |
-
from src.flux.condition import Condition
|
5 |
-
from PIL import Image
|
6 |
-
import argparse
|
7 |
-
import os
|
8 |
-
import json
|
9 |
-
import base64
|
10 |
-
import io
|
11 |
-
import re
|
12 |
-
from PIL import Image, ImageFilter
|
13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
-
from scipy.ndimage import binary_dilation
|
15 |
-
import cv2
|
16 |
-
import openai
|
17 |
-
from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type
|
18 |
-
|
19 |
-
|
20 |
-
from src.flux.generate import generate, seed_everything
|
21 |
-
|
22 |
-
try:
|
23 |
-
from mmengine.visualization import Visualizer
|
24 |
-
except ImportError:
|
25 |
-
Visualizer = None
|
26 |
-
print("Warning: mmengine is not installed, visualization is disabled.")
|
27 |
-
|
28 |
-
import re
|
29 |
-
|
30 |
-
def encode_image_to_datauri(path, size=(512, 512)):
|
31 |
-
with Image.open(path).convert('RGB') as img:
|
32 |
-
img = img.resize(size, Image.LANCZOS)
|
33 |
-
buffer = io.BytesIO()
|
34 |
-
img.save(buffer, format='PNG')
|
35 |
-
b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
36 |
-
return b64
|
37 |
-
# return f"data:image/png;base64,{b64}"
|
38 |
-
|
39 |
-
|
40 |
-
@retry(
|
41 |
-
reraise=True,
|
42 |
-
wait=wait_exponential(min=1, max=60),
|
43 |
-
stop=stop_after_attempt(6),
|
44 |
-
retry=retry_if_exception_type((openai.error.RateLimitError, openai.error.APIError))
|
45 |
-
)
|
46 |
-
def cot_with_gpt(image_uri, instruction):
|
47 |
-
response = openai.ChatCompletion.create(
|
48 |
-
model="gpt-4o",
|
49 |
-
messages=[
|
50 |
-
{
|
51 |
-
"role": "user",
|
52 |
-
"content": [
|
53 |
-
{"type": "text", "text": f'''
|
54 |
-
Now you are an expert in image editing. Based on the given single image, what atomic image editing instructions should be if the user wants to {instruction}? Let's think step by step.
|
55 |
-
Atomic instructions include 13 categories as follows:
|
56 |
-
- Add: e.g.: add a car on the road
|
57 |
-
- Remove: e.g.: remove the sofa in the image
|
58 |
-
- Color Change: e.g.: change the color of the shoes to blue
|
59 |
-
- Material Change: e.g.: change the material of the sign like stone
|
60 |
-
- Action Change: e.g.: change the action of the boy to raising hands
|
61 |
-
- Expression Change: e.g.: change the expression to smile
|
62 |
-
- Replace: e.g.: replace the coffee with an apple
|
63 |
-
- Background Change: e.g.: change the background into forest
|
64 |
-
- Appearance Change: e.g.: make the cup have a floral pattern
|
65 |
-
- Move: e.g.: move the plane to the left
|
66 |
-
- Resize: e.g.: enlarge the clock
|
67 |
-
- Tone Transfer: e.g.: change the weather to foggy
|
68 |
-
- Style Change: e.g.: make the style of the image to cartoon
|
69 |
-
Respond *only* with a numbered list.
|
70 |
-
Each line must begin with the category in square brackets, then the instruction. Please strictly follow the atomic categories.
|
71 |
-
The operation (what) and the target (to what) are crystal clear.
|
72 |
-
Do not split replace to add and remove.
|
73 |
-
For example:
|
74 |
-
“1. [Add] add a car on the road\n
|
75 |
-
2. [Color Change] change the color of the shoes to blue\n
|
76 |
-
3. [Move] move the lamp to the left\n"
|
77 |
-
Do not include any extra text, explanations, JSON or markdown—just the list.
|
78 |
-
'''},
|
79 |
-
{
|
80 |
-
"type": "image_url",
|
81 |
-
"image_url": {
|
82 |
-
"url": f"data:image/jpeg;base64,{image_uri}"
|
83 |
-
}
|
84 |
-
},
|
85 |
-
],
|
86 |
-
}
|
87 |
-
],
|
88 |
-
max_tokens=300,
|
89 |
-
)
|
90 |
-
text = response.choices[0].message.content.strip()
|
91 |
-
print(text)
|
92 |
-
|
93 |
-
categories, instructions = extract_instructions(text)
|
94 |
-
return categories, instructions
|
95 |
-
|
96 |
-
|
97 |
-
def extract_instructions(text):
|
98 |
-
categories = []
|
99 |
-
instructions = []
|
100 |
-
|
101 |
-
pattern = r'^\s*\d+\.\s*\[(.*?)\]\s*(.*?)$'
|
102 |
-
|
103 |
-
for line in text.split('\n'):
|
104 |
-
line = line.strip()
|
105 |
-
if not line:
|
106 |
-
continue
|
107 |
-
|
108 |
-
match = re.match(pattern, line)
|
109 |
-
if match:
|
110 |
-
category = match.group(1).strip()
|
111 |
-
instruction = match.group(2).strip()
|
112 |
-
|
113 |
-
if category and instruction:
|
114 |
-
categories.append(category)
|
115 |
-
instructions.append(instruction)
|
116 |
-
|
117 |
-
return categories, instructions
|
118 |
-
|
119 |
-
def extract_last_bbox(result):
|
120 |
-
pattern = r'\[?<span data-type="inline-math" data-value="XCcoW15cJ10rKVwnLFxzKlxbXHMqKFxkKylccyosXHMqKFxkKylccyosXHMqKFxkKylccyosXHMqKFxkKylccypcXQ=="></span>\]?'
|
121 |
-
matches = re.findall(pattern, result)
|
122 |
-
|
123 |
-
if not matches:
|
124 |
-
simple_pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
|
125 |
-
simple_matches = re.findall(simple_pattern, result)
|
126 |
-
if simple_matches:
|
127 |
-
x0, y0, x1, y1 = map(int, simple_matches[-1])
|
128 |
-
return [x0, y0, x1, y1]
|
129 |
-
else:
|
130 |
-
print(f"No bounding boxes found, please try again: {result}")
|
131 |
-
return None
|
132 |
-
|
133 |
-
last_match = matches[-1]
|
134 |
-
x0, y0, x1, y1 = map(int, last_match[1:])
|
135 |
-
return x0, y0, x1, y1
|
136 |
-
|
137 |
-
|
138 |
-
def infer_with_DiT(task, image, instruction, category):
|
139 |
-
seed_everything(3407)
|
140 |
-
|
141 |
-
if task == 'RoI Inpainting':
|
142 |
-
if category == 'Add' or category == 'Replace':
|
143 |
-
lora_path = "weights/add.safetensors"
|
144 |
-
added = extract_object_with_gpt(instruction)
|
145 |
-
instruction_dit = f"add {added} on the black region"
|
146 |
-
elif category == 'Remove' or category == 'Action Change':
|
147 |
-
lora_path = "weights/remove.safetensors"
|
148 |
-
instruction_dit = f"Fill the hole of the image"
|
149 |
-
|
150 |
-
condition = Condition("scene", image, position_delta=(0, 0))
|
151 |
-
elif task == 'RoI Editing':
|
152 |
-
image = Image.open(image).convert('RGB').resize((512, 512))
|
153 |
-
condition = Condition("scene", image, position_delta=(0, -32))
|
154 |
-
instruction_dit = instruction
|
155 |
-
if category == 'Action Change':
|
156 |
-
lora_path = "weights/action.safetensors"
|
157 |
-
elif category == 'Expression Change':
|
158 |
-
lora_path = "weights/expression.safetensors"
|
159 |
-
elif category == 'Add':
|
160 |
-
lora_path = "weights/addition.safetensors"
|
161 |
-
elif category == 'Material Change':
|
162 |
-
lora_path = "weights/material.safetensors"
|
163 |
-
elif category == 'Color Change':
|
164 |
-
lora_path = "weights/color.safetensors"
|
165 |
-
|
166 |
-
elif task == 'RoI Compositioning':
|
167 |
-
lora_path = "weights/fusion.safetensors"
|
168 |
-
condition = Condition("scene", image, position_delta=(0, 0))
|
169 |
-
instruction_dit = "inpaint the black-bordered region so that the object's edges blend smoothly with the background"
|
170 |
-
|
171 |
-
elif task == 'Global Transformation':
|
172 |
-
image = Image.open(image).convert('RGB').resize((512, 512))
|
173 |
-
instruction_dit = instruction
|
174 |
-
lora_path = "weights/overall.safetensors"
|
175 |
-
|
176 |
-
condition = Condition("scene", image, position_delta=(0, -32))
|
177 |
-
else:
|
178 |
-
raise ValueError(f"Invalid task: '{task}'")
|
179 |
-
pipe = FluxPipeline.from_pretrained(
|
180 |
-
"black-forest-labs/FLUX.1-dev",
|
181 |
-
torch_dtype=torch.bfloat16
|
182 |
-
)
|
183 |
-
|
184 |
-
pipe = pipe.to("cuda")
|
185 |
-
|
186 |
-
pipe.load_lora_weights(
|
187 |
-
"Cicici1109/IEAP",
|
188 |
-
weight_name=lora_path,
|
189 |
-
adapter_name="scene",
|
190 |
-
)
|
191 |
-
result_img = generate(
|
192 |
-
pipe,
|
193 |
-
prompt=instruction_dit,
|
194 |
-
conditions=[condition],
|
195 |
-
config_path = "train/config/scene_512.yaml",
|
196 |
-
num_inference_steps=28,
|
197 |
-
height=512,
|
198 |
-
width=512,
|
199 |
-
).images[0]
|
200 |
-
# result_img
|
201 |
-
if task == 'RoI Editing' and category == 'Action Change':
|
202 |
-
text_roi = extract_object_with_gpt(instruction)
|
203 |
-
instruction_loc = f"<image>Please segment {text_roi}."
|
204 |
-
# (model, tokenizer, image_path, instruction, work_dir, dilate):
|
205 |
-
img = result_img
|
206 |
-
print(f"Instruction: {instruction_loc}")
|
207 |
-
|
208 |
-
model, tokenizer = load_model("ByteDance/Sa2VA-8B")
|
209 |
-
|
210 |
-
result = model.predict_forward(
|
211 |
-
image=img,
|
212 |
-
text=instruction_loc,
|
213 |
-
tokenizer=tokenizer,
|
214 |
-
)
|
215 |
-
|
216 |
-
prediction = result['prediction']
|
217 |
-
print(f"Model Output: {prediction}")
|
218 |
-
|
219 |
-
if '[SEG]' in prediction and 'prediction_masks' in result:
|
220 |
-
pred_mask = result['prediction_masks'][0]
|
221 |
-
pred_mask_np = np.squeeze(np.array(pred_mask))
|
222 |
-
|
223 |
-
## obtain region bbox
|
224 |
-
rows = np.any(pred_mask_np, axis=1)
|
225 |
-
cols = np.any(pred_mask_np, axis=0)
|
226 |
-
if not np.any(rows) or not np.any(cols):
|
227 |
-
print("Warning: Mask is empty, cannot compute bounding box")
|
228 |
-
return img
|
229 |
-
|
230 |
-
y0, y1 = np.where(rows)[0][[0, -1]]
|
231 |
-
x0, x1 = np.where(cols)[0][[0, -1]]
|
232 |
-
|
233 |
-
changed_instance = crop_masked_region(result_img, pred_mask_np)
|
234 |
-
|
235 |
-
return changed_instance, x0, y1, 1
|
236 |
-
|
237 |
-
|
238 |
-
return result_img
|
239 |
-
|
240 |
-
def load_model(model_path):
|
241 |
-
model = AutoModelForCausalLM.from_pretrained(
|
242 |
-
model_path,
|
243 |
-
torch_dtype="auto",
|
244 |
-
device_map="auto",
|
245 |
-
trust_remote_code=True
|
246 |
-
).eval()
|
247 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
248 |
-
return model, tokenizer
|
249 |
-
|
250 |
-
def extract_object_with_gpt(instruction):
|
251 |
-
system_prompt = (
|
252 |
-
"You are a helpful assistant that extracts the object or target being edited in an image editing instruction. "
|
253 |
-
"Only return a concise noun phrase describing the object. "
|
254 |
-
"Examples:\n"
|
255 |
-
"- Input: 'Remove the dog' → Output: 'the dog'\n"
|
256 |
-
"- Input: 'Add a hat on the dog' → Output: 'a hat'\n"
|
257 |
-
"- Input: 'Replace the biggest bear with a tiger' → Output: 'the biggest bear'\n"
|
258 |
-
"- Input: 'Change the action of the girl to riding' → Output: 'the girl'\n"
|
259 |
-
"- Input: 'Move the red car on the lake' → Output: 'the red car'\n"
|
260 |
-
"- Input: 'Minify the carrot on the rabbit's hand' → Output: 'the carrot on the rabbit's hand'\n"
|
261 |
-
"- Input: 'Swap the location of the dog and the cat' → Output: 'the dog and the cat'\n"
|
262 |
-
"Now extract the object for this instruction:"
|
263 |
-
)
|
264 |
-
|
265 |
-
try:
|
266 |
-
response = openai.ChatCompletion.create(
|
267 |
-
model="gpt-3.5-turbo",
|
268 |
-
messages=[
|
269 |
-
{"role": "system", "content": system_prompt},
|
270 |
-
{"role": "user", "content": instruction}
|
271 |
-
],
|
272 |
-
temperature=0.2,
|
273 |
-
max_tokens=20,
|
274 |
-
)
|
275 |
-
object_phrase = response.choices[0].message['content'].strip().strip('"')
|
276 |
-
print(f"Identified object: {object_phrase}")
|
277 |
-
return object_phrase
|
278 |
-
except Exception as e:
|
279 |
-
print(f"GPT extraction failed: {e}")
|
280 |
-
return instruction
|
281 |
-
|
282 |
-
def extract_region_with_gpt(instruction):
|
283 |
-
system_prompt = (
|
284 |
-
"You are a helpful assistant that extracts target region being edited in an image editing instruction. "
|
285 |
-
"Only return a concise noun phrase describing the target region. "
|
286 |
-
"Examples:\n"
|
287 |
-
"- Input: 'Add a red hat to the man on the left' → Output: 'the man on the left'\n"
|
288 |
-
"- Input: 'Add a cat beside the dog' → Output: 'the dog'\n"
|
289 |
-
"Now extract the target region for this instruction:"
|
290 |
-
)
|
291 |
-
|
292 |
-
try:
|
293 |
-
response = openai.ChatCompletion.create(
|
294 |
-
model="gpt-3.5-turbo",
|
295 |
-
messages=[
|
296 |
-
{"role": "system", "content": system_prompt},
|
297 |
-
{"role": "user", "content": instruction}
|
298 |
-
],
|
299 |
-
temperature=0.2,
|
300 |
-
max_tokens=20,
|
301 |
-
)
|
302 |
-
object_phrase = response.choices[0].message['content'].strip().strip('"')
|
303 |
-
print(f"Identified object: {object_phrase}")
|
304 |
-
return object_phrase
|
305 |
-
except Exception as e:
|
306 |
-
print(f"GPT extraction failed: {e}")
|
307 |
-
return instruction
|
308 |
-
|
309 |
-
def get_masked(mask, image):
|
310 |
-
if mask.shape[:2] != image.size[::-1]:
|
311 |
-
raise ValueError(f"Mask size {mask.shape[:2]} does not match image size {image.size}")
|
312 |
-
|
313 |
-
image_array = np.array(image)
|
314 |
-
image_array[mask] = [0, 0, 0]
|
315 |
-
|
316 |
-
return Image.fromarray(image_array)
|
317 |
-
|
318 |
-
def bbox_to_mask(x0, y0, x1, y1, image_shape=(512, 512), fill_value=True):
|
319 |
-
height, width = image_shape
|
320 |
-
|
321 |
-
mask = np.zeros((height, width), dtype=bool)
|
322 |
-
|
323 |
-
x0 = max(0, int(x0))
|
324 |
-
y0 = max(0, int(y0))
|
325 |
-
x1 = min(width, int(x1))
|
326 |
-
y1 = min(height, int(y1))
|
327 |
-
|
328 |
-
if x0 >= x1 or y0 >= y1:
|
329 |
-
print("Warning: Invalid bounding box coordinates")
|
330 |
-
return mask
|
331 |
-
|
332 |
-
mask[y0:y1, x0:x1] = fill_value
|
333 |
-
|
334 |
-
return mask
|
335 |
-
|
336 |
-
def combine_bbox(text, x0, y0, x1, y1):
|
337 |
-
bbox = [x0, y0, x1, y1]
|
338 |
-
return [(text, bbox)]
|
339 |
-
|
340 |
-
def crop_masked_region(image, pred_mask_np):
|
341 |
-
if not isinstance(image, Image.Image):
|
342 |
-
raise ValueError("The input image is not a PIL Image object")
|
343 |
-
if not isinstance(pred_mask_np, np.ndarray) or pred_mask_np.dtype != bool:
|
344 |
-
raise ValueError("pred_mask_np must be a NumPy array of boolean type")
|
345 |
-
if pred_mask_np.shape[:2] != image.size[::-1]:
|
346 |
-
raise ValueError(f"Mask size {pred_mask_np.shape[:2]} does not match image size {image.size}")
|
347 |
-
|
348 |
-
image_rgba = image.convert("RGBA")
|
349 |
-
image_array = np.array(image_rgba)
|
350 |
-
|
351 |
-
rows = np.any(pred_mask_np, axis=1)
|
352 |
-
cols = np.any(pred_mask_np, axis=0)
|
353 |
-
|
354 |
-
if not np.any(rows) or not np.any(cols):
|
355 |
-
print("Warning: Mask is empty, cannot compute bounding box")
|
356 |
-
return image_rgba
|
357 |
-
|
358 |
-
y0, y1 = np.where(rows)[0][[0, -1]]
|
359 |
-
x0, x1 = np.where(cols)[0][[0, -1]]
|
360 |
-
|
361 |
-
cropped_image = image_array[y0:y1+1, x0:x1+1].copy()
|
362 |
-
cropped_mask = pred_mask_np[y0:y1+1, x0:x1+1]
|
363 |
-
|
364 |
-
alpha_channel = np.ones(cropped_mask.shape, dtype=np.uint8) * 255
|
365 |
-
alpha_channel[~cropped_mask] = 0
|
366 |
-
|
367 |
-
cropped_image[:, :, 3] = alpha_channel
|
368 |
-
|
369 |
-
return Image.fromarray(cropped_image, mode='RGBA')
|
370 |
-
|
371 |
-
def roi_localization(image, instruction, category): # add, remove, replace, action change, move, resize
|
372 |
-
model, tokenizer = load_model("ByteDance/Sa2VA-8B")
|
373 |
-
if category == 'Add':
|
374 |
-
text_roi = extract_region_with_gpt(instruction)
|
375 |
-
else:
|
376 |
-
text_roi = extract_object_with_gpt(instruction)
|
377 |
-
instruction_loc = f"<image>Please segment {text_roi}."
|
378 |
-
img = Image.open(image).convert('RGB').resize((512, 512))
|
379 |
-
print(f"Processing image: {os.path.basename(image)}, Instruction: {instruction_loc}")
|
380 |
-
|
381 |
-
result = model.predict_forward(
|
382 |
-
image=img,
|
383 |
-
text=instruction_loc,
|
384 |
-
tokenizer=tokenizer,
|
385 |
-
)
|
386 |
-
|
387 |
-
prediction = result['prediction']
|
388 |
-
print(f"Model Output: {prediction}")
|
389 |
-
|
390 |
-
if '[SEG]' in prediction and 'prediction_masks' in result:
|
391 |
-
pred_mask = result['prediction_masks'][0]
|
392 |
-
pred_mask_np = np.squeeze(np.array(pred_mask))
|
393 |
-
if category == 'Add':
|
394 |
-
## obtain region bbox
|
395 |
-
rows = np.any(pred_mask_np, axis=1)
|
396 |
-
cols = np.any(pred_mask_np, axis=0)
|
397 |
-
if not np.any(rows) or not np.any(cols):
|
398 |
-
print("Warning: Mask is empty, cannot compute bounding box")
|
399 |
-
return img
|
400 |
-
|
401 |
-
y0, y1 = np.where(rows)[0][[0, -1]]
|
402 |
-
x0, x1 = np.where(cols)[0][[0, -1]]
|
403 |
-
|
404 |
-
## obtain inpainting bbox
|
405 |
-
bbox = combine_bbox(text_roi, x0, y0, x1, y1) #? multiple?
|
406 |
-
print(bbox)
|
407 |
-
x0, y0, x1, y1 = layout_add(bbox, instruction)
|
408 |
-
mask = bbox_to_mask(x0, y0, x1, y1)
|
409 |
-
## make it black
|
410 |
-
masked_img = get_masked(mask, img)
|
411 |
-
elif category == 'Move' or category == 'Resize':
|
412 |
-
dilated_original_mask = binary_dilation(pred_mask_np, iterations=3)
|
413 |
-
masked_img = get_masked(dilated_original_mask, img)
|
414 |
-
## obtain region bbox
|
415 |
-
rows = np.any(pred_mask_np, axis=1)
|
416 |
-
cols = np.any(pred_mask_np, axis=0)
|
417 |
-
if not np.any(rows) or not np.any(cols):
|
418 |
-
print("Warning: Mask is empty, cannot compute bounding box")
|
419 |
-
return img
|
420 |
-
|
421 |
-
y0, y1 = np.where(rows)[0][[0, -1]]
|
422 |
-
x0, x1 = np.where(cols)[0][[0, -1]]
|
423 |
-
|
424 |
-
## obtain inpainting bbox
|
425 |
-
bbox = combine_bbox(text_roi, x0, y0, x1, y1) #? multiple?
|
426 |
-
print(bbox)
|
427 |
-
x0_new, y0_new, x1_new, y1_new, = layout_change(bbox, instruction)
|
428 |
-
scale = (y1_new - y0_new) / (y1 - y0)
|
429 |
-
print(scale)
|
430 |
-
changed_instance = crop_masked_region(img, pred_mask_np)
|
431 |
-
|
432 |
-
return masked_img, changed_instance, x0_new, y1_new, scale
|
433 |
-
else:
|
434 |
-
dilated_original_mask = binary_dilation(pred_mask_np, iterations=3)
|
435 |
-
masked_img = get_masked(dilated_original_mask, img)
|
436 |
-
|
437 |
-
return masked_img
|
438 |
-
|
439 |
-
else:
|
440 |
-
print("No valid mask found in the prediction.")
|
441 |
-
return None
|
442 |
-
|
443 |
-
def fusion(background, foreground, x, y, scale):
|
444 |
-
background = background.convert("RGBA")
|
445 |
-
bg_width, bg_height = background.size
|
446 |
-
|
447 |
-
fg_width, fg_height = foreground.size
|
448 |
-
new_size = (int(fg_width * scale), int(fg_height * scale))
|
449 |
-
foreground_resized = foreground.resize(new_size, Image.Resampling.LANCZOS)
|
450 |
-
|
451 |
-
left = x
|
452 |
-
top = y - new_size[1]
|
453 |
-
|
454 |
-
canvas = Image.new('RGBA', (bg_width, bg_height), (0, 0, 0, 0))
|
455 |
-
canvas.paste(foreground_resized, (left, top), foreground_resized)
|
456 |
-
masked_foreground = process_edge(canvas, left, top, new_size)
|
457 |
-
result = Image.alpha_composite(background, masked_foreground)
|
458 |
-
|
459 |
-
return result
|
460 |
-
|
461 |
-
def process_edge(canvas, left, top, size):
|
462 |
-
width, height = size
|
463 |
-
|
464 |
-
region = canvas.crop((left, top, left + width, top + height))
|
465 |
-
alpha = region.getchannel('A')
|
466 |
-
|
467 |
-
dilated_alpha = alpha.filter(ImageFilter.MaxFilter(5))
|
468 |
-
eroded_alpha = alpha.filter(ImageFilter.MinFilter(3))
|
469 |
-
|
470 |
-
edge_mask = Image.new('L', (width, height), 0)
|
471 |
-
edge_pixels = edge_mask.load()
|
472 |
-
dilated_pixels = dilated_alpha.load()
|
473 |
-
eroded_pixels = eroded_alpha.load()
|
474 |
-
|
475 |
-
for y in range(height):
|
476 |
-
for x in range(width):
|
477 |
-
if dilated_pixels[x, y] > 0 and eroded_pixels[x, y] == 0:
|
478 |
-
edge_pixels[x, y] = 255
|
479 |
-
|
480 |
-
black_edge = Image.new('RGBA', (width, height), (0, 0, 0, 0))
|
481 |
-
black_edge.putalpha(edge_mask)
|
482 |
-
|
483 |
-
canvas.paste(black_edge, (left, top), black_edge)
|
484 |
-
|
485 |
-
return canvas
|
486 |
-
|
487 |
-
def combine_text_and_bbox(text_roi, x0, y0, x1, y1):
|
488 |
-
return [(text_roi, [x0, y0, x1, y1])]
|
489 |
-
|
490 |
-
@retry(
|
491 |
-
reraise=True,
|
492 |
-
wait=wait_exponential(min=1, max=60),
|
493 |
-
stop=stop_after_attempt(6),
|
494 |
-
retry=retry_if_exception_type((openai.error.RateLimitError, openai.error.APIError))
|
495 |
-
)
|
496 |
-
def layout_add(bbox, instruction):
|
497 |
-
response = openai.ChatCompletion.create(
|
498 |
-
model="gpt-4o",
|
499 |
-
messages=[
|
500 |
-
{
|
501 |
-
"role": "user",
|
502 |
-
"content": [
|
503 |
-
{"type": "text", "text": f'''
|
504 |
-
You are an intelligent bounding box editor. I will provide you with the current bounding boxes and an add editing instruction.
|
505 |
-
Your task is to determine the new bounding box of the added object. Let's think step by step.
|
506 |
-
The images are of size 512x512. The top-left corner has coordinate [0, 0]. The bottom-right corner has coordinnate [512, 512].
|
507 |
-
The bounding boxes should not go beyond the image boundaries. The new box must be large enough to reasonably encompass the added object in a visually appropriate way, allowing for partial overlap with existing objects when it comes to accessories like hat, necklace. etc.
|
508 |
-
Each bounding box should be in the format of (object name,[top-left x coordinate, top-left y coordinate, bottom-right x coordinate, bottom-right y coordinate]).
|
509 |
-
Only return the bounding box of the newly added object. Do not include the existing bounding boxes.
|
510 |
-
Please consider the semantic information of the layout, preserve semantic relations.
|
511 |
-
If needed, you can make reasonable guesses. Please refer to the examples below:
|
512 |
-
Input bounding boxes: [('a green car', [21, 281, 232, 440])]
|
513 |
-
Editing instruction: Add a bird on the green car.
|
514 |
-
Output bounding boxes: [('a bird', [80, 150, 180, 281])]
|
515 |
-
Input bounding boxes: [('stool', [300, 350, 380, 450])]
|
516 |
-
Editing instruction: Add a cat to the left of the stool.
|
517 |
-
Output bounding boxes: [('a cat', [180, 250, 300, 450])]
|
518 |
-
|
519 |
-
Here are some examples to illustrate appropriate overlapping for better visual effects:
|
520 |
-
Input bounding boxes: [('the white cat', [200, 300, 320, 420])]
|
521 |
-
Editing instruction: Add a hat on the white cat.
|
522 |
-
Output bounding boxes: [('a hat', [200, 150, 320, 330])]
|
523 |
-
Now, the current bounding boxes is {bbox}, the instruction is {instruction}.
|
524 |
-
'''},
|
525 |
-
],
|
526 |
-
}
|
527 |
-
],
|
528 |
-
max_tokens=1000,
|
529 |
-
)
|
530 |
-
|
531 |
-
result = response.choices[0].message.content.strip()
|
532 |
-
|
533 |
-
print(result)
|
534 |
-
bbox = extract_last_bbox(result)
|
535 |
-
return bbox
|
536 |
-
|
537 |
-
@retry(
|
538 |
-
reraise=True,
|
539 |
-
wait=wait_exponential(min=1, max=60),
|
540 |
-
stop=stop_after_attempt(6),
|
541 |
-
retry=retry_if_exception_type((openai.error.RateLimitError, openai.error.APIError))
|
542 |
-
)
|
543 |
-
def layout_change(bbox, instruction):
|
544 |
-
response = openai.ChatCompletion.create(
|
545 |
-
model="gpt-4o",
|
546 |
-
messages=[
|
547 |
-
{
|
548 |
-
"role": "user",
|
549 |
-
"content": [
|
550 |
-
{"type": "text", "text": f'''
|
551 |
-
You are an intelligent bounding box editor. I will provide you with the current bounding boxes and the editing instruction.
|
552 |
-
Your task is to generate the new bounding boxes after editing.
|
553 |
-
The images are of size 512x512. The top-left corner has coordinate [0, 0]. The bottom-right corner has coordinnate [512, 512].
|
554 |
-
The bounding boxes should not overlap or go beyond the image boundaries.
|
555 |
-
Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, bottom-right x coordinate, bottom-right y coordinate]).
|
556 |
-
Do not add new objects or delete any object provided in the bounding boxes. Do not change the size or the shape of any object unless the instruction requires so.
|
557 |
-
Please consider the semantic information of the layout.
|
558 |
-
When resizing, keep the bottom-left corner fixed by default. When swaping locations, change according to the center point.
|
559 |
-
If needed, you can make reasonable guesses. Please refer to the examples below:
|
560 |
-
|
561 |
-
Input bounding boxes: [('a car', [21, 281, 232, 440])]
|
562 |
-
Editing instruction: Move the car to the right.
|
563 |
-
Output bounding boxes: [('a car', [121, 281, 332, 440])]
|
564 |
-
|
565 |
-
Input bounding boxes: [("bed", [50, 300, 450, 450]), ("pillow", [200, 200, 300, 230])]
|
566 |
-
Editing instruction: Move the pillow to the left side of the bed.
|
567 |
-
Output bounding boxes: [("bed", [50, 300, 450, 450]), ("pillow", [70, 270, 170, 300])]
|
568 |
-
|
569 |
-
Input bounding boxes: [("dog", [150, 250, 250, 300])]
|
570 |
-
Editing instruction: Enlarge the dog.
|
571 |
-
Output bounding boxes: [("dog", [150, 225, 300, 300])]
|
572 |
-
|
573 |
-
Input bounding boxes: [("chair", [100, 350, 200, 450]), ("lamp", [300, 200, 360, 300])]
|
574 |
-
Editing instruction: Swap the location of the chair and the lamp.
|
575 |
-
Output bounding boxes: [("chair", [280, 200, 380, 300]), ("lamp", [120, 350, 180, 450])]
|
576 |
-
|
577 |
-
|
578 |
-
Now, the current bounding boxes is {bbox}, the instruction is {instruction}. Let's think step by step, and output the edited layout.
|
579 |
-
'''},
|
580 |
-
],
|
581 |
-
}
|
582 |
-
],
|
583 |
-
max_tokens=1000,
|
584 |
-
)
|
585 |
-
result = response.choices[0].message.content.strip()
|
586 |
-
print(result)
|
587 |
-
bbox = extract_last_bbox(result)
|
588 |
-
return bbox
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|