File size: 4,445 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992c084
 
 
 
d960e2d
992c084
 
 
d960e2d
992c084
 
 
 
d960e2d
992c084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F

try:
    from .nafnet_utils.arch_util import LayerNorm2d
    from .nafnet_utils.arch_model import SimpleGate
except:
    from nafnet_utils.arch_util import LayerNorm2d
    from nafnet_utils.arch_model import SimpleGate


class Branch(nn.Module):
    '''
    Branch that lasts lonly the dilated convolutions
    '''
    def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
        super().__init__()
        self.dw_channel = DW_Expand * c 
        self.branch = nn.Sequential(
                       nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
                       nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
                       nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
                                            bias=True, dilation = dilation) # the dconv
        )
    def forward(self, input):
        return self.branch(input)
    
class EBlock(nn.Module):
    '''
    Change this block using Branch
    '''
    
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False):
        super().__init__()
        #we define the 2 branches
        
        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
            
        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c 
        self.sca = nn.Sequential(
                       nn.AdaptiveAvgPool2d(1),
                       nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
                       groups=1, bias=True, dilation = 1),  
        )
        self.sg1 = SimpleGate()
        self.sg2 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        z = 0
        for branch in self.branches:
            z += branch(x)
        
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        #second step
        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg2(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        return y + x * self.gamma

#----------------------------------------------------------------------------------------------
if __name__ == '__main__':
    
    img_channel = 3
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    dilations = [1, 4, 9]
    extra_depth_wise = False
    
    # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
    net  = EBlock(c = img_channel, 
                            dilations = dilations,
                            extra_depth_wise=extra_depth_wise)

    inp_shape = (3, 256, 256)

    from ptflops import get_model_complexity_info

    # macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)

    # print('Values of EBlock:')
    # print(macs, params)

    channels = 128
    resol = 32
    ksize = 5

    net = FAC(channels=channels, ksize=ksize)
    inp_shape = (channels, resol, resol)
    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
    print('Values of FAC:')
    print(macs, params)