import gradio as gr from PIL import Image import os import torch import torch.nn.functional as F import torchvision.transforms as transforms import torchvision import numpy as np import yaml from huggingface_hub import hf_hub_download from archs import Network from options.options import parse path_opt = './options/predict/LOLBlur.yml' opt = parse(path_opt) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') #define some auxiliary functions pil_to_tensor = transforms.ToTensor() # PATH_MODEL = opt['save']['best'] model = Network(img_channel=opt['network']['img_channels'], width=opt['network']['width'], middle_blk_num=opt['network']['middle_blk_num'], enc_blk_nums=opt['network']['enc_blk_nums'], dec_blk_nums=opt['network']['dec_blk_nums'], dilations=opt['network']['dilations'], extra_depth_wise = opt['network']['extra_depth_wise']) checkpoints = torch.load('Network_noFAC_LOLBlur.pt', map_location=device) # print(checkpoints) model.load_state_dict(checkpoints['model_state_dict']) model = model.to(device) def load_img (filename): img = Image.open(filename).convert("RGB") img_tensor = pil_to_tensor(img) return img_tensor def process_img(image): img = np.array(image) img = img / 255. img = img.astype(np.float32) y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) with torch.no_grad(): x_hat = model(y) restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() restored_img = np.clip(restored_img, 0. , 1.) restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img)) title = "Low-Light-Deblurring 🌚🌠🌝" description = ''' ## [Low Light Image deblurring enhancement](https://github.com/cidautai/Net-Low-light-Deblurring) [Daniel Feijoo](https://github.com/danifei) Fundación Cidaut This model enhances low light images into normal light conditions ones. It was trained using LOLv2-real, LOLv2-synth and LOLBlur. Due to the training on LOLBlur, this network is expected to also reconstruct blurred low light images. > **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. **This demo expects an image with some degradations.** Due to the CPU limitations, the model won't return results inmediately
. Except for the LOLv2-real, the model was trained using mostly synthetic data, thus it might not work great on real-world complex images.
''' examples = [['examples/inputs/0010.png'], ['examples/inputs/0060.png'], ['examples/inputs/0075.png'], ["examples/inputs/0087.png"], ["examples/inputs/0088.png"]] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn = process_img, inputs = [ gr.Image(type = 'pil', label = 'input') ], outputs = [gr.Image(type='pil', label = 'output')], title = title, description = description, examples = examples, css = css ) if __name__ == '__main__': demo.launch()