import torch import torch.nn as nn import torch.nn.functional as F try: from arch_model import EBlock, DBlock from arch_util import CustomSequential except: from archs.arch_model import EBlock, DBlock from .arch_util import CustomSequential class DarkIR(nn.Module): def __init__(self, img_channel=3, width=32, middle_blk_num_enc=2, middle_blk_num_dec=2, enc_blk_nums=[1, 2, 3], dec_blk_nums=[3, 1, 1], dilations = [1, 4, 9], extra_depth_wise = True): super(DarkIR, self).__init__() self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True) self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( CustomSequential( *[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks_enc = \ CustomSequential( *[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)] ) self.middle_blks_dec = \ CustomSequential( *[DBlock(chan, dilations=dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( CustomSequential( *[DBlock(chan, dilations=dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) # this layer is needed for the computing of the middle loss. It isn't necessary for anything else self.side_out = nn.Conv2d(in_channels = width * 2**len(self.encoders), out_channels = img_channel, kernel_size = 3, stride=1, padding=1) def forward(self, input, side_loss = False, use_adapter = None): _, _, H, W = input.shape input = self.check_image_size(input) x = self.intro(input) skips = [] for encoder, down in zip(self.encoders, self.downs): x = encoder(x) skips.append(x) x = down(x) # we apply the encoder transforms x_light = self.middle_blks_enc(x) if side_loss: out_side = self.side_out(x_light) # apply the decoder transforms x = self.middle_blks_dec(x_light) x = x + x_light for decoder, up, skip in zip(self.decoders, self.ups, skips[::-1]): x = up(x) x = x + skip x = decoder(x) x = self.ending(x) x = x + input out = x[:, :, :H, :W] # we recover the original size of the image if side_loss: return out_side, out else: return out def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) return x if __name__ == '__main__': img_channel = 3 width = 64 enc_blks = [1, 2, 3] middle_blk_num_enc = 2 middle_blk_num_dec = 2 dec_blks = [3, 1, 1] residual_layers = None dilations = [1, 4, 9] extra_depth_wise = True net = DarkIR(img_channel=img_channel, width=width, middle_blk_num_enc=middle_blk_num_enc, middle_blk_num_dec= middle_blk_num_dec, enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, dilations = dilations, extra_depth_wise = extra_depth_wise) new_state_dict = net.state_dict() inp_shape = (3, 256, 256) net.load_state_dict(new_state_dict) from ptflops import get_model_complexity_info macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) print(macs, params) weights = net.state_dict() adapter_weights = {k: v for k, v in weights.items() if 'adapter' not in k}