Spaces:
Build error
Build error
Upload 12 files
Browse files- README.md +51 -6
- app.py +2086 -0
- config.py +204 -0
- gitattributes.txt +35 -0
- gitignore.txt +12 -0
- i18n.py +28 -0
- packages.txt +3 -0
- requirements.txt +22 -0
- rmvpe.py +432 -0
- run.sh +16 -0
- utils.py +151 -0
- vc_infer_pipeline.py +646 -0
README.md
CHANGED
|
@@ -1,12 +1,57 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Magic Vocals
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: lgpl-3.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
## 🔧 Pre-requisites
|
| 14 |
+
|
| 15 |
+
Before running the project, you must have the following tool installed on your machine:
|
| 16 |
+
* [Python v3.8.0](https://www.python.org/downloads/release/python-380/)
|
| 17 |
+
|
| 18 |
+
Also, you will need to clone the repository:
|
| 19 |
+
|
| 20 |
+
```bash
|
| 21 |
+
# Clone the repository
|
| 22 |
+
git clone https://huggingface.co/spaces/mateuseap/magic-vocals/
|
| 23 |
+
# Enter in the root directory
|
| 24 |
+
cd magic-vocals
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## 🚀 How to run
|
| 28 |
+
|
| 29 |
+
After you've cloned the repository and entered in the root directory, run the following commands:
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
# Create and activate a Virtual Environment (make sure you're using Python v3.8.0 to do it)
|
| 33 |
+
python -m venv venv
|
| 34 |
+
. venv/bin/activate
|
| 35 |
+
|
| 36 |
+
# Change mode and execute a shell script to configure and run the application
|
| 37 |
+
chmod +x run.sh
|
| 38 |
+
./run.sh
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
After the shell script executes everything, the application will be running at http://127.0.0.1:7860! Open up the link in a browser to use the app:
|
| 42 |
+
|
| 43 |
+

|
| 44 |
+
|
| 45 |
+
**You only need to execute the `run.sh` one time**, once you've executed it one time, you just need to activate the virtual environment and run the command below to start the app again:
|
| 46 |
+
|
| 47 |
+
```bash
|
| 48 |
+
python app.py
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
**THE `run.sh` IS SUPPORTED BY THE FOLLOWING OPERATING SYSTEMS:**
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
| OS | Supported |
|
| 55 |
+
|-----------|:---------:|
|
| 56 |
+
| `Windows` | ❌ |
|
| 57 |
+
| `Ubuntu` | ✅ |
|
app.py
ADDED
|
@@ -0,0 +1,2086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
|
| 2 |
+
from mega import Mega
|
| 3 |
+
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
| 4 |
+
import threading
|
| 5 |
+
from time import sleep
|
| 6 |
+
from subprocess import Popen
|
| 7 |
+
import faiss
|
| 8 |
+
from random import shuffle
|
| 9 |
+
import json, datetime, requests
|
| 10 |
+
from gtts import gTTS
|
| 11 |
+
now_dir = os.getcwd()
|
| 12 |
+
sys.path.append(now_dir)
|
| 13 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 14 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 15 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
| 16 |
+
os.makedirs(tmp, exist_ok=True)
|
| 17 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
| 18 |
+
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
| 19 |
+
os.environ["TEMP"] = tmp
|
| 20 |
+
warnings.filterwarnings("ignore")
|
| 21 |
+
torch.manual_seed(114514)
|
| 22 |
+
from i18n import I18nAuto
|
| 23 |
+
|
| 24 |
+
import signal
|
| 25 |
+
|
| 26 |
+
import math
|
| 27 |
+
|
| 28 |
+
from utils import load_audio, CSVutil
|
| 29 |
+
|
| 30 |
+
global DoFormant, Quefrency, Timbre
|
| 31 |
+
|
| 32 |
+
if not os.path.isdir('csvdb/'):
|
| 33 |
+
os.makedirs('csvdb')
|
| 34 |
+
frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
|
| 35 |
+
frmnt.close()
|
| 36 |
+
stp.close()
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
|
| 40 |
+
DoFormant = (
|
| 41 |
+
lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
|
| 42 |
+
)(DoFormant)
|
| 43 |
+
except (ValueError, TypeError, IndexError):
|
| 44 |
+
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
|
| 45 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
|
| 46 |
+
|
| 47 |
+
def download_models():
|
| 48 |
+
# Download hubert base model if not present
|
| 49 |
+
if not os.path.isfile('./hubert_base.pt'):
|
| 50 |
+
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
|
| 51 |
+
|
| 52 |
+
if response.status_code == 200:
|
| 53 |
+
with open('./hubert_base.pt', 'wb') as f:
|
| 54 |
+
f.write(response.content)
|
| 55 |
+
print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
|
| 56 |
+
else:
|
| 57 |
+
raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
|
| 58 |
+
|
| 59 |
+
# Download rmvpe model if not present
|
| 60 |
+
if not os.path.isfile('./rmvpe.pt'):
|
| 61 |
+
response = requests.get('https://drive.usercontent.google.com/download?id=1Hkn4kNuVFRCNQwyxQFRtmzmMBGpQxptI&export=download&authuser=0&confirm=t&uuid=0b3a40de-465b-4c65-8c41-135b0b45c3f7&at=APZUnTV3lA3LnyTbeuduura6Dmi2:1693724254058')
|
| 62 |
+
|
| 63 |
+
if response.status_code == 200:
|
| 64 |
+
with open('./rmvpe.pt', 'wb') as f:
|
| 65 |
+
f.write(response.content)
|
| 66 |
+
print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
|
| 67 |
+
else:
|
| 68 |
+
raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")
|
| 69 |
+
|
| 70 |
+
download_models()
|
| 71 |
+
|
| 72 |
+
print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
|
| 73 |
+
|
| 74 |
+
def formant_apply(qfrency, tmbre):
|
| 75 |
+
Quefrency = qfrency
|
| 76 |
+
Timbre = tmbre
|
| 77 |
+
DoFormant = True
|
| 78 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
| 79 |
+
|
| 80 |
+
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
|
| 81 |
+
|
| 82 |
+
def get_fshift_presets():
|
| 83 |
+
fshift_presets_list = []
|
| 84 |
+
for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
|
| 85 |
+
for filename in filenames:
|
| 86 |
+
if filename.endswith(".txt"):
|
| 87 |
+
fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
|
| 88 |
+
|
| 89 |
+
if len(fshift_presets_list) > 0:
|
| 90 |
+
return fshift_presets_list
|
| 91 |
+
else:
|
| 92 |
+
return ''
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
|
| 97 |
+
|
| 98 |
+
if (cbox):
|
| 99 |
+
|
| 100 |
+
DoFormant = True
|
| 101 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
| 102 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
| 103 |
+
|
| 104 |
+
return (
|
| 105 |
+
{"value": True, "__type__": "update"},
|
| 106 |
+
{"visible": True, "__type__": "update"},
|
| 107 |
+
{"visible": True, "__type__": "update"},
|
| 108 |
+
{"visible": True, "__type__": "update"},
|
| 109 |
+
{"visible": True, "__type__": "update"},
|
| 110 |
+
{"visible": True, "__type__": "update"},
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
else:
|
| 115 |
+
|
| 116 |
+
DoFormant = False
|
| 117 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
| 118 |
+
|
| 119 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
| 120 |
+
return (
|
| 121 |
+
{"value": False, "__type__": "update"},
|
| 122 |
+
{"visible": False, "__type__": "update"},
|
| 123 |
+
{"visible": False, "__type__": "update"},
|
| 124 |
+
{"visible": False, "__type__": "update"},
|
| 125 |
+
{"visible": False, "__type__": "update"},
|
| 126 |
+
{"visible": False, "__type__": "update"},
|
| 127 |
+
{"visible": False, "__type__": "update"},
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def preset_apply(preset, qfer, tmbr):
|
| 133 |
+
if str(preset) != '':
|
| 134 |
+
with open(str(preset), 'r') as p:
|
| 135 |
+
content = p.readlines()
|
| 136 |
+
qfer, tmbr = content[0].split('\n')[0], content[1]
|
| 137 |
+
|
| 138 |
+
formant_apply(qfer, tmbr)
|
| 139 |
+
else:
|
| 140 |
+
pass
|
| 141 |
+
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
|
| 142 |
+
|
| 143 |
+
def update_fshift_presets(preset, qfrency, tmbre):
|
| 144 |
+
|
| 145 |
+
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
|
| 146 |
+
|
| 147 |
+
if (str(preset) != ''):
|
| 148 |
+
with open(str(preset), 'r') as p:
|
| 149 |
+
content = p.readlines()
|
| 150 |
+
qfrency, tmbre = content[0].split('\n')[0], content[1]
|
| 151 |
+
|
| 152 |
+
formant_apply(qfrency, tmbre)
|
| 153 |
+
else:
|
| 154 |
+
pass
|
| 155 |
+
return (
|
| 156 |
+
{"choices": get_fshift_presets(), "__type__": "update"},
|
| 157 |
+
{"value": qfrency, "__type__": "update"},
|
| 158 |
+
{"value": tmbre, "__type__": "update"},
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
i18n = I18nAuto()
|
| 162 |
+
#i18n.print()
|
| 163 |
+
# 判断是否有能用来训练和加速推理的N卡
|
| 164 |
+
ngpu = torch.cuda.device_count()
|
| 165 |
+
gpu_infos = []
|
| 166 |
+
mem = []
|
| 167 |
+
if (not torch.cuda.is_available()) or ngpu == 0:
|
| 168 |
+
if_gpu_ok = False
|
| 169 |
+
else:
|
| 170 |
+
if_gpu_ok = False
|
| 171 |
+
for i in range(ngpu):
|
| 172 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 173 |
+
if (
|
| 174 |
+
"10" in gpu_name
|
| 175 |
+
or "16" in gpu_name
|
| 176 |
+
or "20" in gpu_name
|
| 177 |
+
or "30" in gpu_name
|
| 178 |
+
or "40" in gpu_name
|
| 179 |
+
or "A2" in gpu_name.upper()
|
| 180 |
+
or "A3" in gpu_name.upper()
|
| 181 |
+
or "A4" in gpu_name.upper()
|
| 182 |
+
or "P4" in gpu_name.upper()
|
| 183 |
+
or "A50" in gpu_name.upper()
|
| 184 |
+
or "A60" in gpu_name.upper()
|
| 185 |
+
or "70" in gpu_name
|
| 186 |
+
or "80" in gpu_name
|
| 187 |
+
or "90" in gpu_name
|
| 188 |
+
or "M4" in gpu_name.upper()
|
| 189 |
+
or "T4" in gpu_name.upper()
|
| 190 |
+
or "TITAN" in gpu_name.upper()
|
| 191 |
+
): # A10#A100#V100#A40#P40#M40#K80#A4500
|
| 192 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
| 193 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
| 194 |
+
mem.append(
|
| 195 |
+
int(
|
| 196 |
+
torch.cuda.get_device_properties(i).total_memory
|
| 197 |
+
/ 1024
|
| 198 |
+
/ 1024
|
| 199 |
+
/ 1024
|
| 200 |
+
+ 0.4
|
| 201 |
+
)
|
| 202 |
+
)
|
| 203 |
+
if if_gpu_ok == True and len(gpu_infos) > 0:
|
| 204 |
+
gpu_info = "\n".join(gpu_infos)
|
| 205 |
+
default_batch_size = min(mem) // 2
|
| 206 |
+
else:
|
| 207 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
| 208 |
+
default_batch_size = 1
|
| 209 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
| 210 |
+
from lib.infer_pack.models import (
|
| 211 |
+
SynthesizerTrnMs256NSFsid,
|
| 212 |
+
SynthesizerTrnMs256NSFsid_nono,
|
| 213 |
+
SynthesizerTrnMs768NSFsid,
|
| 214 |
+
SynthesizerTrnMs768NSFsid_nono,
|
| 215 |
+
)
|
| 216 |
+
import soundfile as sf
|
| 217 |
+
from fairseq import checkpoint_utils
|
| 218 |
+
import gradio as gr
|
| 219 |
+
import logging
|
| 220 |
+
from vc_infer_pipeline import VC
|
| 221 |
+
from config import Config
|
| 222 |
+
|
| 223 |
+
config = Config()
|
| 224 |
+
# from trainset_preprocess_pipeline import PreProcess
|
| 225 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 226 |
+
|
| 227 |
+
hubert_model = None
|
| 228 |
+
|
| 229 |
+
def load_hubert():
|
| 230 |
+
global hubert_model
|
| 231 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 232 |
+
["hubert_base.pt"],
|
| 233 |
+
suffix="",
|
| 234 |
+
)
|
| 235 |
+
hubert_model = models[0]
|
| 236 |
+
hubert_model = hubert_model.to(config.device)
|
| 237 |
+
if config.is_half:
|
| 238 |
+
hubert_model = hubert_model.half()
|
| 239 |
+
else:
|
| 240 |
+
hubert_model = hubert_model.float()
|
| 241 |
+
hubert_model.eval()
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
weight_root = "weights"
|
| 245 |
+
index_root = "logs"
|
| 246 |
+
names = []
|
| 247 |
+
for name in os.listdir(weight_root):
|
| 248 |
+
if name.endswith(".pth"):
|
| 249 |
+
names.append(name)
|
| 250 |
+
index_paths = []
|
| 251 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 252 |
+
for name in files:
|
| 253 |
+
if name.endswith(".index") and "trained" not in name:
|
| 254 |
+
index_paths.append("%s/%s" % (root, name))
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def vc_single(
|
| 259 |
+
sid,
|
| 260 |
+
input_audio_path,
|
| 261 |
+
f0_up_key,
|
| 262 |
+
f0_file,
|
| 263 |
+
f0_method,
|
| 264 |
+
file_index,
|
| 265 |
+
#file_index2,
|
| 266 |
+
# file_big_npy,
|
| 267 |
+
index_rate,
|
| 268 |
+
filter_radius,
|
| 269 |
+
resample_sr,
|
| 270 |
+
rms_mix_rate,
|
| 271 |
+
protect,
|
| 272 |
+
crepe_hop_length,
|
| 273 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
| 274 |
+
global tgt_sr, net_g, vc, hubert_model, version
|
| 275 |
+
if input_audio_path is None:
|
| 276 |
+
return "You need to upload an audio", None
|
| 277 |
+
f0_up_key = int(f0_up_key)
|
| 278 |
+
try:
|
| 279 |
+
audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
|
| 280 |
+
audio_max = np.abs(audio).max() / 0.95
|
| 281 |
+
if audio_max > 1:
|
| 282 |
+
audio /= audio_max
|
| 283 |
+
times = [0, 0, 0]
|
| 284 |
+
if hubert_model == None:
|
| 285 |
+
load_hubert()
|
| 286 |
+
if_f0 = cpt.get("f0", 1)
|
| 287 |
+
file_index = (
|
| 288 |
+
(
|
| 289 |
+
file_index.strip(" ")
|
| 290 |
+
.strip('"')
|
| 291 |
+
.strip("\n")
|
| 292 |
+
.strip('"')
|
| 293 |
+
.strip(" ")
|
| 294 |
+
.replace("trained", "added")
|
| 295 |
+
)
|
| 296 |
+
) # 防止小白写错,自动帮他替换掉
|
| 297 |
+
# file_big_npy = (
|
| 298 |
+
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 299 |
+
# )
|
| 300 |
+
audio_opt = vc.pipeline(
|
| 301 |
+
hubert_model,
|
| 302 |
+
net_g,
|
| 303 |
+
sid,
|
| 304 |
+
audio,
|
| 305 |
+
input_audio_path,
|
| 306 |
+
times,
|
| 307 |
+
f0_up_key,
|
| 308 |
+
f0_method,
|
| 309 |
+
file_index,
|
| 310 |
+
# file_big_npy,
|
| 311 |
+
index_rate,
|
| 312 |
+
if_f0,
|
| 313 |
+
filter_radius,
|
| 314 |
+
tgt_sr,
|
| 315 |
+
resample_sr,
|
| 316 |
+
rms_mix_rate,
|
| 317 |
+
version,
|
| 318 |
+
protect,
|
| 319 |
+
crepe_hop_length,
|
| 320 |
+
f0_file=f0_file,
|
| 321 |
+
)
|
| 322 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 323 |
+
tgt_sr = resample_sr
|
| 324 |
+
index_info = (
|
| 325 |
+
"Using index:%s." % file_index
|
| 326 |
+
if os.path.exists(file_index)
|
| 327 |
+
else "Index not used."
|
| 328 |
+
)
|
| 329 |
+
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
| 330 |
+
index_info,
|
| 331 |
+
times[0],
|
| 332 |
+
times[1],
|
| 333 |
+
times[2],
|
| 334 |
+
), (tgt_sr, audio_opt)
|
| 335 |
+
except:
|
| 336 |
+
info = traceback.format_exc()
|
| 337 |
+
print(info)
|
| 338 |
+
return info, (None, None)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def vc_multi(
|
| 342 |
+
sid,
|
| 343 |
+
dir_path,
|
| 344 |
+
opt_root,
|
| 345 |
+
paths,
|
| 346 |
+
f0_up_key,
|
| 347 |
+
f0_method,
|
| 348 |
+
file_index,
|
| 349 |
+
file_index2,
|
| 350 |
+
# file_big_npy,
|
| 351 |
+
index_rate,
|
| 352 |
+
filter_radius,
|
| 353 |
+
resample_sr,
|
| 354 |
+
rms_mix_rate,
|
| 355 |
+
protect,
|
| 356 |
+
format1,
|
| 357 |
+
crepe_hop_length,
|
| 358 |
+
):
|
| 359 |
+
try:
|
| 360 |
+
dir_path = (
|
| 361 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 362 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
| 363 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 364 |
+
os.makedirs(opt_root, exist_ok=True)
|
| 365 |
+
try:
|
| 366 |
+
if dir_path != "":
|
| 367 |
+
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
| 368 |
+
else:
|
| 369 |
+
paths = [path.name for path in paths]
|
| 370 |
+
except:
|
| 371 |
+
traceback.print_exc()
|
| 372 |
+
paths = [path.name for path in paths]
|
| 373 |
+
infos = []
|
| 374 |
+
for path in paths:
|
| 375 |
+
info, opt = vc_single(
|
| 376 |
+
sid,
|
| 377 |
+
path,
|
| 378 |
+
f0_up_key,
|
| 379 |
+
None,
|
| 380 |
+
f0_method,
|
| 381 |
+
file_index,
|
| 382 |
+
# file_big_npy,
|
| 383 |
+
index_rate,
|
| 384 |
+
filter_radius,
|
| 385 |
+
resample_sr,
|
| 386 |
+
rms_mix_rate,
|
| 387 |
+
protect,
|
| 388 |
+
crepe_hop_length
|
| 389 |
+
)
|
| 390 |
+
if "Success" in info:
|
| 391 |
+
try:
|
| 392 |
+
tgt_sr, audio_opt = opt
|
| 393 |
+
if format1 in ["wav", "flac"]:
|
| 394 |
+
sf.write(
|
| 395 |
+
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
| 396 |
+
audio_opt,
|
| 397 |
+
tgt_sr,
|
| 398 |
+
)
|
| 399 |
+
else:
|
| 400 |
+
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
| 401 |
+
sf.write(
|
| 402 |
+
path,
|
| 403 |
+
audio_opt,
|
| 404 |
+
tgt_sr,
|
| 405 |
+
)
|
| 406 |
+
if os.path.exists(path):
|
| 407 |
+
os.system(
|
| 408 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 409 |
+
% (path, path[:-4] + ".%s" % format1)
|
| 410 |
+
)
|
| 411 |
+
except:
|
| 412 |
+
info += traceback.format_exc()
|
| 413 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
| 414 |
+
yield "\n".join(infos)
|
| 415 |
+
yield "\n".join(infos)
|
| 416 |
+
except:
|
| 417 |
+
yield traceback.format_exc()
|
| 418 |
+
|
| 419 |
+
# 一个选项卡全局只能有一个音色
|
| 420 |
+
def get_vc(sid):
|
| 421 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
| 422 |
+
if sid == "" or sid == []:
|
| 423 |
+
global hubert_model
|
| 424 |
+
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
| 425 |
+
print("clean_empty_cache")
|
| 426 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
| 427 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
| 428 |
+
if torch.cuda.is_available():
|
| 429 |
+
torch.cuda.empty_cache()
|
| 430 |
+
###楼下不这么折腾清理不干净
|
| 431 |
+
if_f0 = cpt.get("f0", 1)
|
| 432 |
+
version = cpt.get("version", "v1")
|
| 433 |
+
if version == "v1":
|
| 434 |
+
if if_f0 == 1:
|
| 435 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
| 436 |
+
*cpt["config"], is_half=config.is_half
|
| 437 |
+
)
|
| 438 |
+
else:
|
| 439 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 440 |
+
elif version == "v2":
|
| 441 |
+
if if_f0 == 1:
|
| 442 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 443 |
+
*cpt["config"], is_half=config.is_half
|
| 444 |
+
)
|
| 445 |
+
else:
|
| 446 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 447 |
+
del net_g, cpt
|
| 448 |
+
if torch.cuda.is_available():
|
| 449 |
+
torch.cuda.empty_cache()
|
| 450 |
+
cpt = None
|
| 451 |
+
return {"visible": False, "__type__": "update"}
|
| 452 |
+
person = "%s/%s" % (weight_root, sid)
|
| 453 |
+
print("loading %s" % person)
|
| 454 |
+
cpt = torch.load(person, map_location="cpu")
|
| 455 |
+
tgt_sr = cpt["config"][-1]
|
| 456 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
| 457 |
+
if_f0 = cpt.get("f0", 1)
|
| 458 |
+
version = cpt.get("version", "v1")
|
| 459 |
+
if version == "v1":
|
| 460 |
+
if if_f0 == 1:
|
| 461 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
| 462 |
+
else:
|
| 463 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 464 |
+
elif version == "v2":
|
| 465 |
+
if if_f0 == 1:
|
| 466 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
| 467 |
+
else:
|
| 468 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 469 |
+
del net_g.enc_q
|
| 470 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
| 471 |
+
net_g.eval().to(config.device)
|
| 472 |
+
if config.is_half:
|
| 473 |
+
net_g = net_g.half()
|
| 474 |
+
else:
|
| 475 |
+
net_g = net_g.float()
|
| 476 |
+
vc = VC(tgt_sr, config)
|
| 477 |
+
n_spk = cpt["config"][-3]
|
| 478 |
+
return {"visible": False, "maximum": n_spk, "__type__": "update"}
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def change_choices():
|
| 482 |
+
names = []
|
| 483 |
+
for name in os.listdir(weight_root):
|
| 484 |
+
if name.endswith(".pth"):
|
| 485 |
+
names.append(name)
|
| 486 |
+
index_paths = []
|
| 487 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 488 |
+
for name in files:
|
| 489 |
+
if name.endswith(".index") and "trained" not in name:
|
| 490 |
+
index_paths.append("%s/%s" % (root, name))
|
| 491 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
| 492 |
+
"choices": sorted(index_paths),
|
| 493 |
+
"__type__": "update",
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
def clean():
|
| 498 |
+
return {"value": "", "__type__": "update"}
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
sr_dict = {
|
| 502 |
+
"32k": 32000,
|
| 503 |
+
"40k": 40000,
|
| 504 |
+
"48k": 48000,
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
def if_done(done, p):
|
| 509 |
+
while 1:
|
| 510 |
+
if p.poll() == None:
|
| 511 |
+
sleep(0.5)
|
| 512 |
+
else:
|
| 513 |
+
break
|
| 514 |
+
done[0] = True
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def if_done_multi(done, ps):
|
| 518 |
+
while 1:
|
| 519 |
+
# poll==None代表进程未结束
|
| 520 |
+
# 只要有一个进程未结束都不停
|
| 521 |
+
flag = 1
|
| 522 |
+
for p in ps:
|
| 523 |
+
if p.poll() == None:
|
| 524 |
+
flag = 0
|
| 525 |
+
sleep(0.5)
|
| 526 |
+
break
|
| 527 |
+
if flag == 1:
|
| 528 |
+
break
|
| 529 |
+
done[0] = True
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
| 533 |
+
sr = sr_dict[sr]
|
| 534 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 535 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
| 536 |
+
f.close()
|
| 537 |
+
cmd = (
|
| 538 |
+
config.python_cmd
|
| 539 |
+
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
| 540 |
+
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
| 541 |
+
+ str(config.noparallel)
|
| 542 |
+
)
|
| 543 |
+
print(cmd)
|
| 544 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
| 545 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 546 |
+
done = [False]
|
| 547 |
+
threading.Thread(
|
| 548 |
+
target=if_done,
|
| 549 |
+
args=(
|
| 550 |
+
done,
|
| 551 |
+
p,
|
| 552 |
+
),
|
| 553 |
+
).start()
|
| 554 |
+
while 1:
|
| 555 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 556 |
+
yield (f.read())
|
| 557 |
+
sleep(1)
|
| 558 |
+
if done[0] == True:
|
| 559 |
+
break
|
| 560 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 561 |
+
log = f.read()
|
| 562 |
+
print(log)
|
| 563 |
+
yield log
|
| 564 |
+
|
| 565 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
| 566 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
| 567 |
+
gpus = gpus.split("-")
|
| 568 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 569 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
| 570 |
+
f.close()
|
| 571 |
+
if if_f0:
|
| 572 |
+
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
| 573 |
+
now_dir,
|
| 574 |
+
exp_dir,
|
| 575 |
+
n_p,
|
| 576 |
+
f0method,
|
| 577 |
+
echl,
|
| 578 |
+
)
|
| 579 |
+
print(cmd)
|
| 580 |
+
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
| 581 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 582 |
+
done = [False]
|
| 583 |
+
threading.Thread(
|
| 584 |
+
target=if_done,
|
| 585 |
+
args=(
|
| 586 |
+
done,
|
| 587 |
+
p,
|
| 588 |
+
),
|
| 589 |
+
).start()
|
| 590 |
+
while 1:
|
| 591 |
+
with open(
|
| 592 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
| 593 |
+
) as f:
|
| 594 |
+
yield (f.read())
|
| 595 |
+
sleep(1)
|
| 596 |
+
if done[0] == True:
|
| 597 |
+
break
|
| 598 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 599 |
+
log = f.read()
|
| 600 |
+
print(log)
|
| 601 |
+
yield log
|
| 602 |
+
####对不同part分别开多进程
|
| 603 |
+
"""
|
| 604 |
+
n_part=int(sys.argv[1])
|
| 605 |
+
i_part=int(sys.argv[2])
|
| 606 |
+
i_gpu=sys.argv[3]
|
| 607 |
+
exp_dir=sys.argv[4]
|
| 608 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
| 609 |
+
"""
|
| 610 |
+
leng = len(gpus)
|
| 611 |
+
ps = []
|
| 612 |
+
for idx, n_g in enumerate(gpus):
|
| 613 |
+
cmd = (
|
| 614 |
+
config.python_cmd
|
| 615 |
+
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
| 616 |
+
% (
|
| 617 |
+
config.device,
|
| 618 |
+
leng,
|
| 619 |
+
idx,
|
| 620 |
+
n_g,
|
| 621 |
+
now_dir,
|
| 622 |
+
exp_dir,
|
| 623 |
+
version19,
|
| 624 |
+
)
|
| 625 |
+
)
|
| 626 |
+
print(cmd)
|
| 627 |
+
p = Popen(
|
| 628 |
+
cmd, shell=True, cwd=now_dir
|
| 629 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 630 |
+
ps.append(p)
|
| 631 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 632 |
+
done = [False]
|
| 633 |
+
threading.Thread(
|
| 634 |
+
target=if_done_multi,
|
| 635 |
+
args=(
|
| 636 |
+
done,
|
| 637 |
+
ps,
|
| 638 |
+
),
|
| 639 |
+
).start()
|
| 640 |
+
while 1:
|
| 641 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 642 |
+
yield (f.read())
|
| 643 |
+
sleep(1)
|
| 644 |
+
if done[0] == True:
|
| 645 |
+
break
|
| 646 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 647 |
+
log = f.read()
|
| 648 |
+
print(log)
|
| 649 |
+
yield log
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
def change_sr2(sr2, if_f0_3, version19):
|
| 653 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 654 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 655 |
+
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
| 656 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
| 657 |
+
if (if_pretrained_generator_exist == False):
|
| 658 |
+
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
| 659 |
+
if (if_pretrained_discriminator_exist == False):
|
| 660 |
+
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
| 661 |
+
return (
|
| 662 |
+
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
| 663 |
+
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
| 664 |
+
{"visible": True, "__type__": "update"}
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
def change_version19(sr2, if_f0_3, version19):
|
| 668 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 669 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 670 |
+
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
| 671 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
|
| 672 |
+
if (if_pretrained_generator_exist == False):
|
| 673 |
+
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
| 674 |
+
if (if_pretrained_discriminator_exist == False):
|
| 675 |
+
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
|
| 676 |
+
return (
|
| 677 |
+
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
|
| 678 |
+
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
|
| 679 |
+
)
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
| 683 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 684 |
+
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
|
| 685 |
+
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
|
| 686 |
+
if (if_pretrained_generator_exist == False):
|
| 687 |
+
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
| 688 |
+
if (if_pretrained_discriminator_exist == False):
|
| 689 |
+
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
|
| 690 |
+
if if_f0_3:
|
| 691 |
+
return (
|
| 692 |
+
{"visible": True, "__type__": "update"},
|
| 693 |
+
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
|
| 694 |
+
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
|
| 695 |
+
)
|
| 696 |
+
return (
|
| 697 |
+
{"visible": False, "__type__": "update"},
|
| 698 |
+
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
|
| 699 |
+
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
global log_interval
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
def set_log_interval(exp_dir, batch_size12):
|
| 707 |
+
log_interval = 1
|
| 708 |
+
|
| 709 |
+
folder_path = os.path.join(exp_dir, "1_16k_wavs")
|
| 710 |
+
|
| 711 |
+
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
| 712 |
+
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
|
| 713 |
+
if wav_files:
|
| 714 |
+
sample_size = len(wav_files)
|
| 715 |
+
log_interval = math.ceil(sample_size / batch_size12)
|
| 716 |
+
if log_interval > 1:
|
| 717 |
+
log_interval += 1
|
| 718 |
+
return log_interval
|
| 719 |
+
|
| 720 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
| 721 |
+
def click_train(
|
| 722 |
+
exp_dir1,
|
| 723 |
+
sr2,
|
| 724 |
+
if_f0_3,
|
| 725 |
+
spk_id5,
|
| 726 |
+
save_epoch10,
|
| 727 |
+
total_epoch11,
|
| 728 |
+
batch_size12,
|
| 729 |
+
if_save_latest13,
|
| 730 |
+
pretrained_G14,
|
| 731 |
+
pretrained_D15,
|
| 732 |
+
gpus16,
|
| 733 |
+
if_cache_gpu17,
|
| 734 |
+
if_save_every_weights18,
|
| 735 |
+
version19,
|
| 736 |
+
):
|
| 737 |
+
CSVutil('csvdb/stop.csv', 'w+', 'formanting', False)
|
| 738 |
+
# 生成filelist
|
| 739 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 740 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 741 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
| 742 |
+
feature_dir = (
|
| 743 |
+
"%s/3_feature256" % (exp_dir)
|
| 744 |
+
if version19 == "v1"
|
| 745 |
+
else "%s/3_feature768" % (exp_dir)
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
log_interval = set_log_interval(exp_dir, batch_size12)
|
| 749 |
+
|
| 750 |
+
if if_f0_3:
|
| 751 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
| 752 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
| 753 |
+
names = (
|
| 754 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 755 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 756 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 757 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 758 |
+
)
|
| 759 |
+
else:
|
| 760 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 761 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 762 |
+
)
|
| 763 |
+
opt = []
|
| 764 |
+
for name in names:
|
| 765 |
+
if if_f0_3:
|
| 766 |
+
opt.append(
|
| 767 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 768 |
+
% (
|
| 769 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 770 |
+
name,
|
| 771 |
+
feature_dir.replace("\\", "\\\\"),
|
| 772 |
+
name,
|
| 773 |
+
f0_dir.replace("\\", "\\\\"),
|
| 774 |
+
name,
|
| 775 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 776 |
+
name,
|
| 777 |
+
spk_id5,
|
| 778 |
+
)
|
| 779 |
+
)
|
| 780 |
+
else:
|
| 781 |
+
opt.append(
|
| 782 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 783 |
+
% (
|
| 784 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 785 |
+
name,
|
| 786 |
+
feature_dir.replace("\\", "\\\\"),
|
| 787 |
+
name,
|
| 788 |
+
spk_id5,
|
| 789 |
+
)
|
| 790 |
+
)
|
| 791 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 792 |
+
if if_f0_3:
|
| 793 |
+
for _ in range(2):
|
| 794 |
+
opt.append(
|
| 795 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 796 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 797 |
+
)
|
| 798 |
+
else:
|
| 799 |
+
for _ in range(2):
|
| 800 |
+
opt.append(
|
| 801 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 802 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 803 |
+
)
|
| 804 |
+
shuffle(opt)
|
| 805 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
| 806 |
+
f.write("\n".join(opt))
|
| 807 |
+
print("write filelist done")
|
| 808 |
+
# 生成config#无需生成config
|
| 809 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
| 810 |
+
print("use gpus:", gpus16)
|
| 811 |
+
if pretrained_G14 == "":
|
| 812 |
+
print("no pretrained Generator")
|
| 813 |
+
if pretrained_D15 == "":
|
| 814 |
+
print("no pretrained Discriminator")
|
| 815 |
+
if gpus16:
|
| 816 |
+
cmd = (
|
| 817 |
+
config.python_cmd
|
| 818 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
| 819 |
+
% (
|
| 820 |
+
exp_dir1,
|
| 821 |
+
sr2,
|
| 822 |
+
1 if if_f0_3 else 0,
|
| 823 |
+
batch_size12,
|
| 824 |
+
gpus16,
|
| 825 |
+
total_epoch11,
|
| 826 |
+
save_epoch10,
|
| 827 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
| 828 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
| 829 |
+
1 if if_save_latest13 == True else 0,
|
| 830 |
+
1 if if_cache_gpu17 == True else 0,
|
| 831 |
+
1 if if_save_every_weights18 == True else 0,
|
| 832 |
+
version19,
|
| 833 |
+
log_interval,
|
| 834 |
+
)
|
| 835 |
+
)
|
| 836 |
+
else:
|
| 837 |
+
cmd = (
|
| 838 |
+
config.python_cmd
|
| 839 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
| 840 |
+
% (
|
| 841 |
+
exp_dir1,
|
| 842 |
+
sr2,
|
| 843 |
+
1 if if_f0_3 else 0,
|
| 844 |
+
batch_size12,
|
| 845 |
+
total_epoch11,
|
| 846 |
+
save_epoch10,
|
| 847 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
|
| 848 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
|
| 849 |
+
1 if if_save_latest13 == True else 0,
|
| 850 |
+
1 if if_cache_gpu17 == True else 0,
|
| 851 |
+
1 if if_save_every_weights18 == True else 0,
|
| 852 |
+
version19,
|
| 853 |
+
log_interval,
|
| 854 |
+
)
|
| 855 |
+
)
|
| 856 |
+
print(cmd)
|
| 857 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 858 |
+
global PID
|
| 859 |
+
PID = p.pid
|
| 860 |
+
p.wait()
|
| 861 |
+
return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
# but4.click(train_index, [exp_dir1], info3)
|
| 865 |
+
def train_index(exp_dir1, version19):
|
| 866 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 867 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 868 |
+
feature_dir = (
|
| 869 |
+
"%s/3_feature256" % (exp_dir)
|
| 870 |
+
if version19 == "v1"
|
| 871 |
+
else "%s/3_feature768" % (exp_dir)
|
| 872 |
+
)
|
| 873 |
+
if os.path.exists(feature_dir) == False:
|
| 874 |
+
return "请先进行特征提取!"
|
| 875 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 876 |
+
if len(listdir_res) == 0:
|
| 877 |
+
return "请先进行特征提取!"
|
| 878 |
+
npys = []
|
| 879 |
+
for name in sorted(listdir_res):
|
| 880 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 881 |
+
npys.append(phone)
|
| 882 |
+
big_npy = np.concatenate(npys, 0)
|
| 883 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 884 |
+
np.random.shuffle(big_npy_idx)
|
| 885 |
+
big_npy = big_npy[big_npy_idx]
|
| 886 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
| 887 |
+
# n_ivf = big_npy.shape[0] // 39
|
| 888 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 889 |
+
infos = []
|
| 890 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
| 891 |
+
yield "\n".join(infos)
|
| 892 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 893 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
| 894 |
+
infos.append("training")
|
| 895 |
+
yield "\n".join(infos)
|
| 896 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 897 |
+
index_ivf.nprobe = 1
|
| 898 |
+
index.train(big_npy)
|
| 899 |
+
faiss.write_index(
|
| 900 |
+
index,
|
| 901 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 902 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 903 |
+
)
|
| 904 |
+
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 905 |
+
infos.append("adding")
|
| 906 |
+
yield "\n".join(infos)
|
| 907 |
+
batch_size_add = 8192
|
| 908 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 909 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 910 |
+
faiss.write_index(
|
| 911 |
+
index,
|
| 912 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 913 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 914 |
+
)
|
| 915 |
+
infos.append(
|
| 916 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 917 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 918 |
+
)
|
| 919 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 920 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
| 921 |
+
yield "\n".join(infos)
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
| 925 |
+
def train1key(
|
| 926 |
+
exp_dir1,
|
| 927 |
+
sr2,
|
| 928 |
+
if_f0_3,
|
| 929 |
+
trainset_dir4,
|
| 930 |
+
spk_id5,
|
| 931 |
+
np7,
|
| 932 |
+
f0method8,
|
| 933 |
+
save_epoch10,
|
| 934 |
+
total_epoch11,
|
| 935 |
+
batch_size12,
|
| 936 |
+
if_save_latest13,
|
| 937 |
+
pretrained_G14,
|
| 938 |
+
pretrained_D15,
|
| 939 |
+
gpus16,
|
| 940 |
+
if_cache_gpu17,
|
| 941 |
+
if_save_every_weights18,
|
| 942 |
+
version19,
|
| 943 |
+
echl
|
| 944 |
+
):
|
| 945 |
+
infos = []
|
| 946 |
+
|
| 947 |
+
def get_info_str(strr):
|
| 948 |
+
infos.append(strr)
|
| 949 |
+
return "\n".join(infos)
|
| 950 |
+
|
| 951 |
+
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 952 |
+
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
| 953 |
+
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
| 954 |
+
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
| 955 |
+
feature_dir = (
|
| 956 |
+
"%s/3_feature256" % model_log_dir
|
| 957 |
+
if version19 == "v1"
|
| 958 |
+
else "%s/3_feature768" % model_log_dir
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
os.makedirs(model_log_dir, exist_ok=True)
|
| 962 |
+
#########step1:处理数据
|
| 963 |
+
open(preprocess_log_path, "w").close()
|
| 964 |
+
cmd = (
|
| 965 |
+
config.python_cmd
|
| 966 |
+
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
| 967 |
+
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
| 968 |
+
+ str(config.noparallel)
|
| 969 |
+
)
|
| 970 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
| 971 |
+
yield get_info_str(cmd)
|
| 972 |
+
p = Popen(cmd, shell=True)
|
| 973 |
+
p.wait()
|
| 974 |
+
with open(preprocess_log_path, "r") as f:
|
| 975 |
+
print(f.read())
|
| 976 |
+
#########step2a:提取音高
|
| 977 |
+
open(extract_f0_feature_log_path, "w")
|
| 978 |
+
if if_f0_3:
|
| 979 |
+
yield get_info_str("step2a:正在提取音高")
|
| 980 |
+
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
| 981 |
+
model_log_dir,
|
| 982 |
+
np7,
|
| 983 |
+
f0method8,
|
| 984 |
+
echl
|
| 985 |
+
)
|
| 986 |
+
yield get_info_str(cmd)
|
| 987 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 988 |
+
p.wait()
|
| 989 |
+
with open(extract_f0_feature_log_path, "r") as f:
|
| 990 |
+
print(f.read())
|
| 991 |
+
else:
|
| 992 |
+
yield get_info_str(i18n("step2a:无需提取音高"))
|
| 993 |
+
#######step2b:提取特征
|
| 994 |
+
yield get_info_str(i18n("step2b:正在提取特征"))
|
| 995 |
+
gpus = gpus16.split("-")
|
| 996 |
+
leng = len(gpus)
|
| 997 |
+
ps = []
|
| 998 |
+
for idx, n_g in enumerate(gpus):
|
| 999 |
+
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
| 1000 |
+
config.device,
|
| 1001 |
+
leng,
|
| 1002 |
+
idx,
|
| 1003 |
+
n_g,
|
| 1004 |
+
model_log_dir,
|
| 1005 |
+
version19,
|
| 1006 |
+
)
|
| 1007 |
+
yield get_info_str(cmd)
|
| 1008 |
+
p = Popen(
|
| 1009 |
+
cmd, shell=True, cwd=now_dir
|
| 1010 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 1011 |
+
ps.append(p)
|
| 1012 |
+
for p in ps:
|
| 1013 |
+
p.wait()
|
| 1014 |
+
with open(extract_f0_feature_log_path, "r") as f:
|
| 1015 |
+
print(f.read())
|
| 1016 |
+
#######step3a:训练模型
|
| 1017 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
| 1018 |
+
# 生成filelist
|
| 1019 |
+
if if_f0_3:
|
| 1020 |
+
f0_dir = "%s/2a_f0" % model_log_dir
|
| 1021 |
+
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
| 1022 |
+
names = (
|
| 1023 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 1024 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 1025 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 1026 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 1027 |
+
)
|
| 1028 |
+
else:
|
| 1029 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 1030 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 1031 |
+
)
|
| 1032 |
+
opt = []
|
| 1033 |
+
for name in names:
|
| 1034 |
+
if if_f0_3:
|
| 1035 |
+
opt.append(
|
| 1036 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 1037 |
+
% (
|
| 1038 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 1039 |
+
name,
|
| 1040 |
+
feature_dir.replace("\\", "\\\\"),
|
| 1041 |
+
name,
|
| 1042 |
+
f0_dir.replace("\\", "\\\\"),
|
| 1043 |
+
name,
|
| 1044 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 1045 |
+
name,
|
| 1046 |
+
spk_id5,
|
| 1047 |
+
)
|
| 1048 |
+
)
|
| 1049 |
+
else:
|
| 1050 |
+
opt.append(
|
| 1051 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 1052 |
+
% (
|
| 1053 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 1054 |
+
name,
|
| 1055 |
+
feature_dir.replace("\\", "\\\\"),
|
| 1056 |
+
name,
|
| 1057 |
+
spk_id5,
|
| 1058 |
+
)
|
| 1059 |
+
)
|
| 1060 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 1061 |
+
if if_f0_3:
|
| 1062 |
+
for _ in range(2):
|
| 1063 |
+
opt.append(
|
| 1064 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 1065 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 1066 |
+
)
|
| 1067 |
+
else:
|
| 1068 |
+
for _ in range(2):
|
| 1069 |
+
opt.append(
|
| 1070 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 1071 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 1072 |
+
)
|
| 1073 |
+
shuffle(opt)
|
| 1074 |
+
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
| 1075 |
+
f.write("\n".join(opt))
|
| 1076 |
+
yield get_info_str("write filelist done")
|
| 1077 |
+
if gpus16:
|
| 1078 |
+
cmd = (
|
| 1079 |
+
config.python_cmd
|
| 1080 |
+
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
| 1081 |
+
% (
|
| 1082 |
+
exp_dir1,
|
| 1083 |
+
sr2,
|
| 1084 |
+
1 if if_f0_3 else 0,
|
| 1085 |
+
batch_size12,
|
| 1086 |
+
gpus16,
|
| 1087 |
+
total_epoch11,
|
| 1088 |
+
save_epoch10,
|
| 1089 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
| 1090 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
| 1091 |
+
1 if if_save_latest13 == True else 0,
|
| 1092 |
+
1 if if_cache_gpu17 == True else 0,
|
| 1093 |
+
1 if if_save_every_weights18 == True else 0,
|
| 1094 |
+
version19,
|
| 1095 |
+
)
|
| 1096 |
+
)
|
| 1097 |
+
else:
|
| 1098 |
+
cmd = (
|
| 1099 |
+
config.python_cmd
|
| 1100 |
+
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
| 1101 |
+
% (
|
| 1102 |
+
exp_dir1,
|
| 1103 |
+
sr2,
|
| 1104 |
+
1 if if_f0_3 else 0,
|
| 1105 |
+
batch_size12,
|
| 1106 |
+
total_epoch11,
|
| 1107 |
+
save_epoch10,
|
| 1108 |
+
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
|
| 1109 |
+
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
|
| 1110 |
+
1 if if_save_latest13 == True else 0,
|
| 1111 |
+
1 if if_cache_gpu17 == True else 0,
|
| 1112 |
+
1 if if_save_every_weights18 == True else 0,
|
| 1113 |
+
version19,
|
| 1114 |
+
)
|
| 1115 |
+
)
|
| 1116 |
+
yield get_info_str(cmd)
|
| 1117 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 1118 |
+
p.wait()
|
| 1119 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
| 1120 |
+
#######step3b:训练索引
|
| 1121 |
+
npys = []
|
| 1122 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 1123 |
+
for name in sorted(listdir_res):
|
| 1124 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 1125 |
+
npys.append(phone)
|
| 1126 |
+
big_npy = np.concatenate(npys, 0)
|
| 1127 |
+
|
| 1128 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 1129 |
+
np.random.shuffle(big_npy_idx)
|
| 1130 |
+
big_npy = big_npy[big_npy_idx]
|
| 1131 |
+
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
| 1132 |
+
|
| 1133 |
+
# n_ivf = big_npy.shape[0] // 39
|
| 1134 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 1135 |
+
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
| 1136 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 1137 |
+
yield get_info_str("training index")
|
| 1138 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 1139 |
+
index_ivf.nprobe = 1
|
| 1140 |
+
index.train(big_npy)
|
| 1141 |
+
faiss.write_index(
|
| 1142 |
+
index,
|
| 1143 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 1144 |
+
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 1145 |
+
)
|
| 1146 |
+
yield get_info_str("adding index")
|
| 1147 |
+
batch_size_add = 8192
|
| 1148 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 1149 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 1150 |
+
faiss.write_index(
|
| 1151 |
+
index,
|
| 1152 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 1153 |
+
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 1154 |
+
)
|
| 1155 |
+
yield get_info_str(
|
| 1156 |
+
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 1157 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 1158 |
+
)
|
| 1159 |
+
yield get_info_str(i18n("全流程结束!"))
|
| 1160 |
+
|
| 1161 |
+
|
| 1162 |
+
def whethercrepeornah(radio):
|
| 1163 |
+
mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
|
| 1164 |
+
return ({"visible": mango, "__type__": "update"})
|
| 1165 |
+
|
| 1166 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
| 1167 |
+
def change_info_(ckpt_path):
|
| 1168 |
+
if (
|
| 1169 |
+
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
|
| 1170 |
+
== False
|
| 1171 |
+
):
|
| 1172 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 1173 |
+
try:
|
| 1174 |
+
with open(
|
| 1175 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
| 1176 |
+
) as f:
|
| 1177 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
| 1178 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
| 1179 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
| 1180 |
+
return sr, str(f0), version
|
| 1181 |
+
except:
|
| 1182 |
+
traceback.print_exc()
|
| 1183 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 1184 |
+
|
| 1185 |
+
|
| 1186 |
+
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
| 1190 |
+
cpt = torch.load(ModelPath, map_location="cpu")
|
| 1191 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
| 1192 |
+
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2] # hidden_channels,为768Vec做准备
|
| 1193 |
+
|
| 1194 |
+
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
|
| 1195 |
+
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
| 1196 |
+
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
| 1197 |
+
test_pitchf = torch.rand(1, 200) # nsf基频
|
| 1198 |
+
test_ds = torch.LongTensor([0]) # 说话人ID
|
| 1199 |
+
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
| 1200 |
+
|
| 1201 |
+
device = "cpu" # 导出时设备(不影响使用模型)
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
net_g = SynthesizerTrnMsNSFsidM(
|
| 1205 |
+
*cpt["config"], is_half=False,version=cpt.get("version","v1")
|
| 1206 |
+
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
| 1207 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
| 1208 |
+
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
| 1209 |
+
output_names = [
|
| 1210 |
+
"audio",
|
| 1211 |
+
]
|
| 1212 |
+
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
|
| 1213 |
+
torch.onnx.export(
|
| 1214 |
+
net_g,
|
| 1215 |
+
(
|
| 1216 |
+
test_phone.to(device),
|
| 1217 |
+
test_phone_lengths.to(device),
|
| 1218 |
+
test_pitch.to(device),
|
| 1219 |
+
test_pitchf.to(device),
|
| 1220 |
+
test_ds.to(device),
|
| 1221 |
+
test_rnd.to(device),
|
| 1222 |
+
),
|
| 1223 |
+
ExportedPath,
|
| 1224 |
+
dynamic_axes={
|
| 1225 |
+
"phone": [1],
|
| 1226 |
+
"pitch": [1],
|
| 1227 |
+
"pitchf": [1],
|
| 1228 |
+
"rnd": [2],
|
| 1229 |
+
},
|
| 1230 |
+
do_constant_folding=False,
|
| 1231 |
+
opset_version=16,
|
| 1232 |
+
verbose=False,
|
| 1233 |
+
input_names=input_names,
|
| 1234 |
+
output_names=output_names,
|
| 1235 |
+
)
|
| 1236 |
+
return "Finished"
|
| 1237 |
+
|
| 1238 |
+
#region RVC WebUI App
|
| 1239 |
+
|
| 1240 |
+
def get_presets():
|
| 1241 |
+
data = None
|
| 1242 |
+
with open('../inference-presets.json', 'r') as file:
|
| 1243 |
+
data = json.load(file)
|
| 1244 |
+
preset_names = []
|
| 1245 |
+
for preset in data['presets']:
|
| 1246 |
+
preset_names.append(preset['name'])
|
| 1247 |
+
|
| 1248 |
+
return preset_names
|
| 1249 |
+
|
| 1250 |
+
def change_choices2():
|
| 1251 |
+
audio_files=[]
|
| 1252 |
+
for filename in os.listdir("./audios"):
|
| 1253 |
+
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
|
| 1254 |
+
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
|
| 1255 |
+
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
|
| 1256 |
+
|
| 1257 |
+
audio_files=[]
|
| 1258 |
+
for filename in os.listdir("./audios"):
|
| 1259 |
+
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
|
| 1260 |
+
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
|
| 1261 |
+
|
| 1262 |
+
def get_index():
|
| 1263 |
+
if check_for_name() != '':
|
| 1264 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
| 1265 |
+
logs_path="./logs/"+chosen_model
|
| 1266 |
+
if os.path.exists(logs_path):
|
| 1267 |
+
for file in os.listdir(logs_path):
|
| 1268 |
+
if file.endswith(".index"):
|
| 1269 |
+
return os.path.join(logs_path, file)
|
| 1270 |
+
return ''
|
| 1271 |
+
else:
|
| 1272 |
+
return ''
|
| 1273 |
+
|
| 1274 |
+
def get_indexes():
|
| 1275 |
+
indexes_list=[]
|
| 1276 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
| 1277 |
+
for filename in filenames:
|
| 1278 |
+
if filename.endswith(".index"):
|
| 1279 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
| 1280 |
+
if len(indexes_list) > 0:
|
| 1281 |
+
return indexes_list
|
| 1282 |
+
else:
|
| 1283 |
+
return ''
|
| 1284 |
+
|
| 1285 |
+
def get_name():
|
| 1286 |
+
if len(audio_files) > 0:
|
| 1287 |
+
return sorted(audio_files)[0]
|
| 1288 |
+
else:
|
| 1289 |
+
return ''
|
| 1290 |
+
|
| 1291 |
+
def save_to_wav(record_button):
|
| 1292 |
+
if record_button is None:
|
| 1293 |
+
pass
|
| 1294 |
+
else:
|
| 1295 |
+
path_to_file=record_button
|
| 1296 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
| 1297 |
+
new_path='./audios/'+new_name
|
| 1298 |
+
shutil.move(path_to_file,new_path)
|
| 1299 |
+
return new_path
|
| 1300 |
+
|
| 1301 |
+
def save_to_wav2(dropbox):
|
| 1302 |
+
file_path=dropbox.name
|
| 1303 |
+
shutil.move(file_path,'./audios')
|
| 1304 |
+
return os.path.join('./audios',os.path.basename(file_path))
|
| 1305 |
+
|
| 1306 |
+
def match_index(sid0):
|
| 1307 |
+
folder=sid0.split(".")[0]
|
| 1308 |
+
parent_dir="./logs/"+folder
|
| 1309 |
+
if os.path.exists(parent_dir):
|
| 1310 |
+
for filename in os.listdir(parent_dir):
|
| 1311 |
+
if filename.endswith(".index"):
|
| 1312 |
+
index_path=os.path.join(parent_dir,filename)
|
| 1313 |
+
return index_path
|
| 1314 |
+
else:
|
| 1315 |
+
return ''
|
| 1316 |
+
|
| 1317 |
+
def check_for_name():
|
| 1318 |
+
if len(names) > 0:
|
| 1319 |
+
return sorted(names)[0]
|
| 1320 |
+
else:
|
| 1321 |
+
return ''
|
| 1322 |
+
|
| 1323 |
+
def download_from_url(url, model):
|
| 1324 |
+
if url == '':
|
| 1325 |
+
return "URL cannot be left empty."
|
| 1326 |
+
if model =='':
|
| 1327 |
+
return "You need to name your model. For example: My-Model"
|
| 1328 |
+
url = url.strip()
|
| 1329 |
+
zip_dirs = ["zips", "unzips"]
|
| 1330 |
+
for directory in zip_dirs:
|
| 1331 |
+
if os.path.exists(directory):
|
| 1332 |
+
shutil.rmtree(directory)
|
| 1333 |
+
os.makedirs("zips", exist_ok=True)
|
| 1334 |
+
os.makedirs("unzips", exist_ok=True)
|
| 1335 |
+
zipfile = model + '.zip'
|
| 1336 |
+
zipfile_path = './zips/' + zipfile
|
| 1337 |
+
try:
|
| 1338 |
+
if "drive.google.com" in url:
|
| 1339 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
| 1340 |
+
elif "mega.nz" in url:
|
| 1341 |
+
m = Mega()
|
| 1342 |
+
m.download_url(url, './zips')
|
| 1343 |
+
else:
|
| 1344 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
| 1345 |
+
for filename in os.listdir("./zips"):
|
| 1346 |
+
if filename.endswith(".zip"):
|
| 1347 |
+
zipfile_path = os.path.join("./zips/",filename)
|
| 1348 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
| 1349 |
+
else:
|
| 1350 |
+
return "No zipfile found."
|
| 1351 |
+
for root, dirs, files in os.walk('./unzips'):
|
| 1352 |
+
for file in files:
|
| 1353 |
+
file_path = os.path.join(root, file)
|
| 1354 |
+
if file.endswith(".index"):
|
| 1355 |
+
os.mkdir(f'./logs/{model}')
|
| 1356 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
| 1357 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
| 1358 |
+
shutil.copy(file_path,f'./weights/{model}.pth')
|
| 1359 |
+
shutil.rmtree("zips")
|
| 1360 |
+
shutil.rmtree("unzips")
|
| 1361 |
+
return "Success."
|
| 1362 |
+
except:
|
| 1363 |
+
return "There's been an error."
|
| 1364 |
+
def success_message(face):
|
| 1365 |
+
return f'{face.name} has been uploaded.', 'None'
|
| 1366 |
+
def mouth(size, face, voice, faces):
|
| 1367 |
+
if size == 'Half':
|
| 1368 |
+
size = 2
|
| 1369 |
+
else:
|
| 1370 |
+
size = 1
|
| 1371 |
+
if faces == 'None':
|
| 1372 |
+
character = face.name
|
| 1373 |
+
else:
|
| 1374 |
+
if faces == 'Ben Shapiro':
|
| 1375 |
+
character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
|
| 1376 |
+
elif faces == 'Andrew Tate':
|
| 1377 |
+
character = '/content/wav2lip-HD/inputs/tate-7.mp4'
|
| 1378 |
+
command = "python inference.py " \
|
| 1379 |
+
"--checkpoint_path checkpoints/wav2lip.pth " \
|
| 1380 |
+
f"--face {character} " \
|
| 1381 |
+
f"--audio {voice} " \
|
| 1382 |
+
"--pads 0 20 0 0 " \
|
| 1383 |
+
"--outfile /content/wav2lip-HD/outputs/result.mp4 " \
|
| 1384 |
+
"--fps 24 " \
|
| 1385 |
+
f"--resize_factor {size}"
|
| 1386 |
+
process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
|
| 1387 |
+
stdout, stderr = process.communicate()
|
| 1388 |
+
return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
|
| 1389 |
+
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
|
| 1390 |
+
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
|
| 1391 |
+
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))
|
| 1392 |
+
|
| 1393 |
+
def stoptraining(mim):
|
| 1394 |
+
if int(mim) == 1:
|
| 1395 |
+
try:
|
| 1396 |
+
CSVutil('csvdb/stop.csv', 'w+', 'stop', 'True')
|
| 1397 |
+
os.kill(PID, signal.SIGTERM)
|
| 1398 |
+
except Exception as e:
|
| 1399 |
+
print(f"Couldn't click due to {e}")
|
| 1400 |
+
return (
|
| 1401 |
+
{"visible": False, "__type__": "update"},
|
| 1402 |
+
{"visible": True, "__type__": "update"},
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
|
| 1406 |
+
def elevenTTS(xiapi, text, id, lang):
|
| 1407 |
+
if xiapi!= '' and id !='':
|
| 1408 |
+
choice = chosen_voice[id]
|
| 1409 |
+
CHUNK_SIZE = 1024
|
| 1410 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
|
| 1411 |
+
headers = {
|
| 1412 |
+
"Accept": "audio/mpeg",
|
| 1413 |
+
"Content-Type": "application/json",
|
| 1414 |
+
"xi-api-key": xiapi
|
| 1415 |
+
}
|
| 1416 |
+
if lang == 'en':
|
| 1417 |
+
data = {
|
| 1418 |
+
"text": text,
|
| 1419 |
+
"model_id": "eleven_monolingual_v1",
|
| 1420 |
+
"voice_settings": {
|
| 1421 |
+
"stability": 0.5,
|
| 1422 |
+
"similarity_boost": 0.5
|
| 1423 |
+
}
|
| 1424 |
+
}
|
| 1425 |
+
else:
|
| 1426 |
+
data = {
|
| 1427 |
+
"text": text,
|
| 1428 |
+
"model_id": "eleven_multilingual_v1",
|
| 1429 |
+
"voice_settings": {
|
| 1430 |
+
"stability": 0.5,
|
| 1431 |
+
"similarity_boost": 0.5
|
| 1432 |
+
}
|
| 1433 |
+
}
|
| 1434 |
+
|
| 1435 |
+
response = requests.post(url, json=data, headers=headers)
|
| 1436 |
+
with open('./temp_eleven.mp3', 'wb') as f:
|
| 1437 |
+
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
|
| 1438 |
+
if chunk:
|
| 1439 |
+
f.write(chunk)
|
| 1440 |
+
aud_path = save_to_wav('./temp_eleven.mp3')
|
| 1441 |
+
return aud_path, aud_path
|
| 1442 |
+
else:
|
| 1443 |
+
tts = gTTS(text, lang=lang)
|
| 1444 |
+
tts.save('./temp_gTTS.mp3')
|
| 1445 |
+
aud_path = save_to_wav('./temp_gTTS.mp3')
|
| 1446 |
+
return aud_path, aud_path
|
| 1447 |
+
|
| 1448 |
+
def upload_to_dataset(files, dir):
|
| 1449 |
+
if dir == '':
|
| 1450 |
+
dir = './dataset'
|
| 1451 |
+
if not os.path.exists(dir):
|
| 1452 |
+
os.makedirs(dir)
|
| 1453 |
+
count = 0
|
| 1454 |
+
for file in files:
|
| 1455 |
+
path=file.name
|
| 1456 |
+
shutil.copy2(path,dir)
|
| 1457 |
+
count += 1
|
| 1458 |
+
return f' {count} files uploaded to {dir}.'
|
| 1459 |
+
|
| 1460 |
+
def zip_downloader(model):
|
| 1461 |
+
if not os.path.exists(f'./weights/{model}.pth'):
|
| 1462 |
+
return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
| 1463 |
+
index_found = False
|
| 1464 |
+
for file in os.listdir(f'./logs/{model}'):
|
| 1465 |
+
if file.endswith('.index') and 'added' in file:
|
| 1466 |
+
log_file = file
|
| 1467 |
+
index_found = True
|
| 1468 |
+
if index_found:
|
| 1469 |
+
return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
| 1470 |
+
else:
|
| 1471 |
+
return f'./weights/{model}.pth', "Could not find Index file."
|
| 1472 |
+
|
| 1473 |
+
with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
| 1474 |
+
with gr.Tabs():
|
| 1475 |
+
with gr.TabItem("Inference"):
|
| 1476 |
+
gr.HTML("<h1> RVC V2 Huggingface Version </h1>")
|
| 1477 |
+
|
| 1478 |
+
# Inference Preset Row
|
| 1479 |
+
# with gr.Row():
|
| 1480 |
+
# mangio_preset = gr.Dropdown(label="Inference Preset", choices=sorted(get_presets()))
|
| 1481 |
+
# mangio_preset_name_save = gr.Textbox(
|
| 1482 |
+
# label="Your preset name"
|
| 1483 |
+
# )
|
| 1484 |
+
# mangio_preset_save_btn = gr.Button('Save Preset', variant="primary")
|
| 1485 |
+
|
| 1486 |
+
# Other RVC stuff
|
| 1487 |
+
with gr.Row():
|
| 1488 |
+
sid0 = gr.Dropdown(label="1.Choose your Model.", choices=sorted(names), value=check_for_name())
|
| 1489 |
+
refresh_button = gr.Button("Refresh", variant="primary")
|
| 1490 |
+
if check_for_name() != '':
|
| 1491 |
+
get_vc(sorted(names)[0])
|
| 1492 |
+
vc_transform0 = gr.Number(label="Optional: You can change the pitch here or leave it at 0.", value=0)
|
| 1493 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 1494 |
+
spk_item = gr.Slider(
|
| 1495 |
+
minimum=0,
|
| 1496 |
+
maximum=2333,
|
| 1497 |
+
step=1,
|
| 1498 |
+
label=i18n("请选择说话人id"),
|
| 1499 |
+
value=0,
|
| 1500 |
+
visible=False,
|
| 1501 |
+
interactive=True,
|
| 1502 |
+
)
|
| 1503 |
+
#clean_button.click(fn=clean, inputs=[], outputs=[sid0])
|
| 1504 |
+
sid0.change(
|
| 1505 |
+
fn=get_vc,
|
| 1506 |
+
inputs=[sid0],
|
| 1507 |
+
outputs=[spk_item],
|
| 1508 |
+
)
|
| 1509 |
+
but0 = gr.Button("Convert", variant="primary")
|
| 1510 |
+
with gr.Row():
|
| 1511 |
+
with gr.Column():
|
| 1512 |
+
with gr.Row():
|
| 1513 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
| 1514 |
+
with gr.Row():
|
| 1515 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
| 1516 |
+
with gr.Row():
|
| 1517 |
+
input_audio0 = gr.Dropdown(
|
| 1518 |
+
label="2.Choose your audio.",
|
| 1519 |
+
value="./audios/someguy.mp3",
|
| 1520 |
+
choices=audio_files
|
| 1521 |
+
)
|
| 1522 |
+
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
|
| 1523 |
+
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
| 1524 |
+
refresh_button2 = gr.Button("Refresh", variant="primary", size='sm')
|
| 1525 |
+
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
|
| 1526 |
+
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0])
|
| 1527 |
+
with gr.Row():
|
| 1528 |
+
with gr.Accordion('Text To Speech', open=False):
|
| 1529 |
+
with gr.Column():
|
| 1530 |
+
lang = gr.Radio(label='Chinese & Japanese do not work with ElevenLabs currently.',choices=['en','es','fr','pt','zh-CN','de','hi','ja'], value='en')
|
| 1531 |
+
api_box = gr.Textbox(label="Enter your API Key for ElevenLabs, or leave empty to use GoogleTTS", value='')
|
| 1532 |
+
elevenid=gr.Dropdown(label="Voice:", choices=eleven_voices)
|
| 1533 |
+
with gr.Column():
|
| 1534 |
+
tfs = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
|
| 1535 |
+
tts_button = gr.Button(value="Speak")
|
| 1536 |
+
tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0])
|
| 1537 |
+
with gr.Row():
|
| 1538 |
+
with gr.Accordion('Wav2Lip', open=False):
|
| 1539 |
+
with gr.Row():
|
| 1540 |
+
size = gr.Radio(label='Resolution:',choices=['Half','Full'])
|
| 1541 |
+
face = gr.UploadButton("Upload A Character",type='file')
|
| 1542 |
+
faces = gr.Dropdown(label="OR Choose one:", choices=['None','Ben Shapiro','Andrew Tate'])
|
| 1543 |
+
with gr.Row():
|
| 1544 |
+
preview = gr.Textbox(label="Status:",interactive=False)
|
| 1545 |
+
face.upload(fn=success_message,inputs=[face], outputs=[preview, faces])
|
| 1546 |
+
with gr.Row():
|
| 1547 |
+
animation = gr.Video(type='filepath')
|
| 1548 |
+
refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation])
|
| 1549 |
+
with gr.Row():
|
| 1550 |
+
animate_button = gr.Button('Animate')
|
| 1551 |
+
|
| 1552 |
+
with gr.Column():
|
| 1553 |
+
with gr.Accordion("Index Settings", open=False):
|
| 1554 |
+
file_index1 = gr.Dropdown(
|
| 1555 |
+
label="3. Path to your added.index file (if it didn't automatically find it.)",
|
| 1556 |
+
choices=get_indexes(),
|
| 1557 |
+
value=get_index(),
|
| 1558 |
+
interactive=True,
|
| 1559 |
+
)
|
| 1560 |
+
sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1])
|
| 1561 |
+
refresh_button.click(
|
| 1562 |
+
fn=change_choices, inputs=[], outputs=[sid0, file_index1]
|
| 1563 |
+
)
|
| 1564 |
+
# file_big_npy1 = gr.Textbox(
|
| 1565 |
+
# label=i18n("特征文件路径"),
|
| 1566 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1567 |
+
# interactive=True,
|
| 1568 |
+
# )
|
| 1569 |
+
index_rate1 = gr.Slider(
|
| 1570 |
+
minimum=0,
|
| 1571 |
+
maximum=1,
|
| 1572 |
+
label=i18n("检索特征占比"),
|
| 1573 |
+
value=0.66,
|
| 1574 |
+
interactive=True,
|
| 1575 |
+
)
|
| 1576 |
+
vc_output2 = gr.Audio(
|
| 1577 |
+
label="Output Audio (Click on the Three Dots in the Right Corner to Download)",
|
| 1578 |
+
type='filepath',
|
| 1579 |
+
interactive=False,
|
| 1580 |
+
)
|
| 1581 |
+
animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview])
|
| 1582 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 1583 |
+
f0method0 = gr.Radio(
|
| 1584 |
+
label="Optional: Change the Pitch Extraction Algorithm.\nExtraction methods are sorted from 'worst quality' to 'best quality'.\nmangio-crepe may or may not be better than rmvpe in cases where 'smoothness' is more important, but rmvpe is the best overall.",
|
| 1585 |
+
choices=["pm", "dio", "crepe-tiny", "mangio-crepe-tiny", "crepe", "harvest", "mangio-crepe", "rmvpe"], # Fork Feature. Add Crepe-Tiny
|
| 1586 |
+
value="rmvpe",
|
| 1587 |
+
interactive=True,
|
| 1588 |
+
)
|
| 1589 |
+
|
| 1590 |
+
crepe_hop_length = gr.Slider(
|
| 1591 |
+
minimum=1,
|
| 1592 |
+
maximum=512,
|
| 1593 |
+
step=1,
|
| 1594 |
+
label="Mangio-Crepe Hop Length. Higher numbers will reduce the chance of extreme pitch changes but lower numbers will increase accuracy. 64-192 is a good range to experiment with.",
|
| 1595 |
+
value=120,
|
| 1596 |
+
interactive=True,
|
| 1597 |
+
visible=False,
|
| 1598 |
+
)
|
| 1599 |
+
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
|
| 1600 |
+
filter_radius0 = gr.Slider(
|
| 1601 |
+
minimum=0,
|
| 1602 |
+
maximum=7,
|
| 1603 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 1604 |
+
value=3,
|
| 1605 |
+
step=1,
|
| 1606 |
+
interactive=True,
|
| 1607 |
+
)
|
| 1608 |
+
resample_sr0 = gr.Slider(
|
| 1609 |
+
minimum=0,
|
| 1610 |
+
maximum=48000,
|
| 1611 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1612 |
+
value=0,
|
| 1613 |
+
step=1,
|
| 1614 |
+
interactive=True,
|
| 1615 |
+
visible=False
|
| 1616 |
+
)
|
| 1617 |
+
rms_mix_rate0 = gr.Slider(
|
| 1618 |
+
minimum=0,
|
| 1619 |
+
maximum=1,
|
| 1620 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 1621 |
+
value=0.21,
|
| 1622 |
+
interactive=True,
|
| 1623 |
+
)
|
| 1624 |
+
protect0 = gr.Slider(
|
| 1625 |
+
minimum=0,
|
| 1626 |
+
maximum=0.5,
|
| 1627 |
+
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
| 1628 |
+
value=0.33,
|
| 1629 |
+
step=0.01,
|
| 1630 |
+
interactive=True,
|
| 1631 |
+
)
|
| 1632 |
+
formanting = gr.Checkbox(
|
| 1633 |
+
value=bool(DoFormant),
|
| 1634 |
+
label="[EXPERIMENTAL] Formant shift inference audio",
|
| 1635 |
+
info="Used for male to female and vice-versa conversions",
|
| 1636 |
+
interactive=True,
|
| 1637 |
+
visible=True,
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
formant_preset = gr.Dropdown(
|
| 1641 |
+
value='',
|
| 1642 |
+
choices=get_fshift_presets(),
|
| 1643 |
+
label="browse presets for formanting",
|
| 1644 |
+
visible=bool(DoFormant),
|
| 1645 |
+
)
|
| 1646 |
+
formant_refresh_button = gr.Button(
|
| 1647 |
+
value='\U0001f504',
|
| 1648 |
+
visible=bool(DoFormant),
|
| 1649 |
+
variant='primary',
|
| 1650 |
+
)
|
| 1651 |
+
#formant_refresh_button = ToolButton( elem_id='1')
|
| 1652 |
+
#create_refresh_button(formant_preset, lambda: {"choices": formant_preset}, "refresh_list_shiftpresets")
|
| 1653 |
+
|
| 1654 |
+
qfrency = gr.Slider(
|
| 1655 |
+
value=Quefrency,
|
| 1656 |
+
info="Default value is 1.0",
|
| 1657 |
+
label="Quefrency for formant shifting",
|
| 1658 |
+
minimum=0.0,
|
| 1659 |
+
maximum=16.0,
|
| 1660 |
+
step=0.1,
|
| 1661 |
+
visible=bool(DoFormant),
|
| 1662 |
+
interactive=True,
|
| 1663 |
+
)
|
| 1664 |
+
tmbre = gr.Slider(
|
| 1665 |
+
value=Timbre,
|
| 1666 |
+
info="Default value is 1.0",
|
| 1667 |
+
label="Timbre for formant shifting",
|
| 1668 |
+
minimum=0.0,
|
| 1669 |
+
maximum=16.0,
|
| 1670 |
+
step=0.1,
|
| 1671 |
+
visible=bool(DoFormant),
|
| 1672 |
+
interactive=True,
|
| 1673 |
+
)
|
| 1674 |
+
|
| 1675 |
+
formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
|
| 1676 |
+
frmntbut = gr.Button("Apply", variant="primary", visible=bool(DoFormant))
|
| 1677 |
+
formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
|
| 1678 |
+
frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
|
| 1679 |
+
formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
|
| 1680 |
+
with gr.Row():
|
| 1681 |
+
vc_output1 = gr.Textbox("")
|
| 1682 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
| 1683 |
+
|
| 1684 |
+
but0.click(
|
| 1685 |
+
vc_single,
|
| 1686 |
+
[
|
| 1687 |
+
spk_item,
|
| 1688 |
+
input_audio0,
|
| 1689 |
+
vc_transform0,
|
| 1690 |
+
f0_file,
|
| 1691 |
+
f0method0,
|
| 1692 |
+
file_index1,
|
| 1693 |
+
# file_index2,
|
| 1694 |
+
# file_big_npy1,
|
| 1695 |
+
index_rate1,
|
| 1696 |
+
filter_radius0,
|
| 1697 |
+
resample_sr0,
|
| 1698 |
+
rms_mix_rate0,
|
| 1699 |
+
protect0,
|
| 1700 |
+
crepe_hop_length
|
| 1701 |
+
],
|
| 1702 |
+
[vc_output1, vc_output2],
|
| 1703 |
+
)
|
| 1704 |
+
|
| 1705 |
+
with gr.Accordion("Batch Conversion",open=False):
|
| 1706 |
+
with gr.Row():
|
| 1707 |
+
with gr.Column():
|
| 1708 |
+
vc_transform1 = gr.Number(
|
| 1709 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 1710 |
+
)
|
| 1711 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
| 1712 |
+
f0method1 = gr.Radio(
|
| 1713 |
+
label=i18n(
|
| 1714 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
| 1715 |
+
),
|
| 1716 |
+
choices=["pm", "harvest", "crepe", "rmvpe"],
|
| 1717 |
+
value="rmvpe",
|
| 1718 |
+
interactive=True,
|
| 1719 |
+
)
|
| 1720 |
+
filter_radius1 = gr.Slider(
|
| 1721 |
+
minimum=0,
|
| 1722 |
+
maximum=7,
|
| 1723 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 1724 |
+
value=3,
|
| 1725 |
+
step=1,
|
| 1726 |
+
interactive=True,
|
| 1727 |
+
)
|
| 1728 |
+
with gr.Column():
|
| 1729 |
+
file_index3 = gr.Textbox(
|
| 1730 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1731 |
+
value="",
|
| 1732 |
+
interactive=True,
|
| 1733 |
+
)
|
| 1734 |
+
file_index4 = gr.Dropdown(
|
| 1735 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 1736 |
+
choices=sorted(index_paths),
|
| 1737 |
+
interactive=True,
|
| 1738 |
+
)
|
| 1739 |
+
refresh_button.click(
|
| 1740 |
+
fn=lambda: change_choices()[1],
|
| 1741 |
+
inputs=[],
|
| 1742 |
+
outputs=file_index4,
|
| 1743 |
+
)
|
| 1744 |
+
# file_big_npy2 = gr.Textbox(
|
| 1745 |
+
# label=i18n("特征文件路径"),
|
| 1746 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1747 |
+
# interactive=True,
|
| 1748 |
+
# )
|
| 1749 |
+
index_rate2 = gr.Slider(
|
| 1750 |
+
minimum=0,
|
| 1751 |
+
maximum=1,
|
| 1752 |
+
label=i18n("检索特征占比"),
|
| 1753 |
+
value=1,
|
| 1754 |
+
interactive=True,
|
| 1755 |
+
)
|
| 1756 |
+
with gr.Column():
|
| 1757 |
+
resample_sr1 = gr.Slider(
|
| 1758 |
+
minimum=0,
|
| 1759 |
+
maximum=48000,
|
| 1760 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1761 |
+
value=0,
|
| 1762 |
+
step=1,
|
| 1763 |
+
interactive=True,
|
| 1764 |
+
)
|
| 1765 |
+
rms_mix_rate1 = gr.Slider(
|
| 1766 |
+
minimum=0,
|
| 1767 |
+
maximum=1,
|
| 1768 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 1769 |
+
value=1,
|
| 1770 |
+
interactive=True,
|
| 1771 |
+
)
|
| 1772 |
+
protect1 = gr.Slider(
|
| 1773 |
+
minimum=0,
|
| 1774 |
+
maximum=0.5,
|
| 1775 |
+
label=i18n(
|
| 1776 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1777 |
+
),
|
| 1778 |
+
value=0.33,
|
| 1779 |
+
step=0.01,
|
| 1780 |
+
interactive=True,
|
| 1781 |
+
)
|
| 1782 |
+
with gr.Column():
|
| 1783 |
+
dir_input = gr.Textbox(
|
| 1784 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
| 1785 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
| 1786 |
+
)
|
| 1787 |
+
inputs = gr.File(
|
| 1788 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
| 1789 |
+
)
|
| 1790 |
+
with gr.Row():
|
| 1791 |
+
format1 = gr.Radio(
|
| 1792 |
+
label=i18n("导出文件格式"),
|
| 1793 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1794 |
+
value="flac",
|
| 1795 |
+
interactive=True,
|
| 1796 |
+
)
|
| 1797 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 1798 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 1799 |
+
but1.click(
|
| 1800 |
+
vc_multi,
|
| 1801 |
+
[
|
| 1802 |
+
spk_item,
|
| 1803 |
+
dir_input,
|
| 1804 |
+
opt_input,
|
| 1805 |
+
inputs,
|
| 1806 |
+
vc_transform1,
|
| 1807 |
+
f0method1,
|
| 1808 |
+
file_index3,
|
| 1809 |
+
file_index4,
|
| 1810 |
+
# file_big_npy2,
|
| 1811 |
+
index_rate2,
|
| 1812 |
+
filter_radius1,
|
| 1813 |
+
resample_sr1,
|
| 1814 |
+
rms_mix_rate1,
|
| 1815 |
+
protect1,
|
| 1816 |
+
format1,
|
| 1817 |
+
crepe_hop_length,
|
| 1818 |
+
],
|
| 1819 |
+
[vc_output3],
|
| 1820 |
+
)
|
| 1821 |
+
but1.click(fn=lambda: easy_uploader.clear())
|
| 1822 |
+
with gr.TabItem("Download Model"):
|
| 1823 |
+
with gr.Row():
|
| 1824 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
| 1825 |
+
with gr.Row():
|
| 1826 |
+
model = gr.Textbox(label="Name your model:")
|
| 1827 |
+
download_button=gr.Button("Download")
|
| 1828 |
+
with gr.Row():
|
| 1829 |
+
status_bar=gr.Textbox(label="")
|
| 1830 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
| 1831 |
+
with gr.Row():
|
| 1832 |
+
gr.Markdown(
|
| 1833 |
+
"""
|
| 1834 |
+
Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap)
|
| 1835 |
+
"""
|
| 1836 |
+
)
|
| 1837 |
+
|
| 1838 |
+
def has_two_files_in_pretrained_folder():
|
| 1839 |
+
pretrained_folder = "./pretrained/"
|
| 1840 |
+
if not os.path.exists(pretrained_folder):
|
| 1841 |
+
return False
|
| 1842 |
+
|
| 1843 |
+
files_in_folder = os.listdir(pretrained_folder)
|
| 1844 |
+
num_files = len(files_in_folder)
|
| 1845 |
+
return num_files >= 2
|
| 1846 |
+
|
| 1847 |
+
if has_two_files_in_pretrained_folder():
|
| 1848 |
+
print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")
|
| 1849 |
+
with gr.TabItem("Train", visible=False):
|
| 1850 |
+
with gr.Row():
|
| 1851 |
+
with gr.Column():
|
| 1852 |
+
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
|
| 1853 |
+
sr2 = gr.Radio(
|
| 1854 |
+
label=i18n("目标采样率"),
|
| 1855 |
+
choices=["40k", "48k"],
|
| 1856 |
+
value="40k",
|
| 1857 |
+
interactive=True,
|
| 1858 |
+
visible=False
|
| 1859 |
+
)
|
| 1860 |
+
if_f0_3 = gr.Radio(
|
| 1861 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
| 1862 |
+
choices=[True, False],
|
| 1863 |
+
value=True,
|
| 1864 |
+
interactive=True,
|
| 1865 |
+
visible=False
|
| 1866 |
+
)
|
| 1867 |
+
version19 = gr.Radio(
|
| 1868 |
+
label="RVC version",
|
| 1869 |
+
choices=["v1", "v2"],
|
| 1870 |
+
value="v2",
|
| 1871 |
+
interactive=True,
|
| 1872 |
+
visible=False,
|
| 1873 |
+
)
|
| 1874 |
+
np7 = gr.Slider(
|
| 1875 |
+
minimum=0,
|
| 1876 |
+
maximum=config.n_cpu,
|
| 1877 |
+
step=1,
|
| 1878 |
+
label="# of CPUs for data processing (Leave as it is)",
|
| 1879 |
+
value=config.n_cpu,
|
| 1880 |
+
interactive=True,
|
| 1881 |
+
visible=True
|
| 1882 |
+
)
|
| 1883 |
+
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
|
| 1884 |
+
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
|
| 1885 |
+
but1 = gr.Button("1. Process The Dataset", variant="primary")
|
| 1886 |
+
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
|
| 1887 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
|
| 1888 |
+
but1.click(
|
| 1889 |
+
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
| 1890 |
+
)
|
| 1891 |
+
with gr.Column():
|
| 1892 |
+
spk_id5 = gr.Slider(
|
| 1893 |
+
minimum=0,
|
| 1894 |
+
maximum=4,
|
| 1895 |
+
step=1,
|
| 1896 |
+
label=i18n("请指定说话人id"),
|
| 1897 |
+
value=0,
|
| 1898 |
+
interactive=True,
|
| 1899 |
+
visible=False
|
| 1900 |
+
)
|
| 1901 |
+
with gr.Accordion('GPU Settings', open=False, visible=False):
|
| 1902 |
+
gpus6 = gr.Textbox(
|
| 1903 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 1904 |
+
value=gpus,
|
| 1905 |
+
interactive=True,
|
| 1906 |
+
visible=False
|
| 1907 |
+
)
|
| 1908 |
+
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
| 1909 |
+
f0method8 = gr.Radio(
|
| 1910 |
+
label=i18n(
|
| 1911 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
| 1912 |
+
),
|
| 1913 |
+
choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
|
| 1914 |
+
value="rmvpe",
|
| 1915 |
+
interactive=True,
|
| 1916 |
+
)
|
| 1917 |
+
|
| 1918 |
+
extraction_crepe_hop_length = gr.Slider(
|
| 1919 |
+
minimum=1,
|
| 1920 |
+
maximum=512,
|
| 1921 |
+
step=1,
|
| 1922 |
+
label=i18n("crepe_hop_length"),
|
| 1923 |
+
value=128,
|
| 1924 |
+
interactive=True,
|
| 1925 |
+
visible=False,
|
| 1926 |
+
)
|
| 1927 |
+
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
| 1928 |
+
but2 = gr.Button("2. Pitch Extraction", variant="primary")
|
| 1929 |
+
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
|
| 1930 |
+
but2.click(
|
| 1931 |
+
extract_f0_feature,
|
| 1932 |
+
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
| 1933 |
+
[info2],
|
| 1934 |
+
)
|
| 1935 |
+
with gr.Row():
|
| 1936 |
+
with gr.Column():
|
| 1937 |
+
total_epoch11 = gr.Slider(
|
| 1938 |
+
minimum=1,
|
| 1939 |
+
maximum=5000,
|
| 1940 |
+
step=10,
|
| 1941 |
+
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
|
| 1942 |
+
value=250,
|
| 1943 |
+
interactive=True,
|
| 1944 |
+
)
|
| 1945 |
+
butstop = gr.Button(
|
| 1946 |
+
"Stop Training",
|
| 1947 |
+
variant='primary',
|
| 1948 |
+
visible=False,
|
| 1949 |
+
)
|
| 1950 |
+
but3 = gr.Button("3. Train Model", variant="primary", visible=True)
|
| 1951 |
+
|
| 1952 |
+
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
|
| 1953 |
+
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
|
| 1954 |
+
|
| 1955 |
+
|
| 1956 |
+
but4 = gr.Button("4.Train Index", variant="primary")
|
| 1957 |
+
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
|
| 1958 |
+
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
|
| 1959 |
+
#gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
| 1960 |
+
with gr.Column():
|
| 1961 |
+
save_epoch10 = gr.Slider(
|
| 1962 |
+
minimum=1,
|
| 1963 |
+
maximum=200,
|
| 1964 |
+
step=1,
|
| 1965 |
+
label="Backup every X amount of epochs:",
|
| 1966 |
+
value=10,
|
| 1967 |
+
interactive=True,
|
| 1968 |
+
)
|
| 1969 |
+
batch_size12 = gr.Slider(
|
| 1970 |
+
minimum=1,
|
| 1971 |
+
maximum=40,
|
| 1972 |
+
step=1,
|
| 1973 |
+
label="Batch Size (LEAVE IT unless you know what you're doing!):",
|
| 1974 |
+
value=default_batch_size,
|
| 1975 |
+
interactive=True,
|
| 1976 |
+
)
|
| 1977 |
+
if_save_latest13 = gr.Checkbox(
|
| 1978 |
+
label="Save only the latest '.ckpt' file to save disk space.",
|
| 1979 |
+
value=True,
|
| 1980 |
+
interactive=True,
|
| 1981 |
+
)
|
| 1982 |
+
if_cache_gpu17 = gr.Checkbox(
|
| 1983 |
+
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
|
| 1984 |
+
value=False,
|
| 1985 |
+
interactive=True,
|
| 1986 |
+
)
|
| 1987 |
+
if_save_every_weights18 = gr.Checkbox(
|
| 1988 |
+
label="Save a small final model to the 'weights' folder at each save point.",
|
| 1989 |
+
value=True,
|
| 1990 |
+
interactive=True,
|
| 1991 |
+
)
|
| 1992 |
+
zip_model = gr.Button('5. Download Model')
|
| 1993 |
+
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
|
| 1994 |
+
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
|
| 1995 |
+
with gr.Group():
|
| 1996 |
+
with gr.Accordion("Base Model Locations:", open=False, visible=False):
|
| 1997 |
+
pretrained_G14 = gr.Textbox(
|
| 1998 |
+
label=i18n("加载预训练底模G路径"),
|
| 1999 |
+
value="pretrained_v2/f0G40k.pth",
|
| 2000 |
+
interactive=True,
|
| 2001 |
+
)
|
| 2002 |
+
pretrained_D15 = gr.Textbox(
|
| 2003 |
+
label=i18n("加载预训练底模D路径"),
|
| 2004 |
+
value="pretrained_v2/f0D40k.pth",
|
| 2005 |
+
interactive=True,
|
| 2006 |
+
)
|
| 2007 |
+
gpus16 = gr.Textbox(
|
| 2008 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 2009 |
+
value=gpus,
|
| 2010 |
+
interactive=True,
|
| 2011 |
+
)
|
| 2012 |
+
sr2.change(
|
| 2013 |
+
change_sr2,
|
| 2014 |
+
[sr2, if_f0_3, version19],
|
| 2015 |
+
[pretrained_G14, pretrained_D15, version19],
|
| 2016 |
+
)
|
| 2017 |
+
version19.change(
|
| 2018 |
+
change_version19,
|
| 2019 |
+
[sr2, if_f0_3, version19],
|
| 2020 |
+
[pretrained_G14, pretrained_D15],
|
| 2021 |
+
)
|
| 2022 |
+
if_f0_3.change(
|
| 2023 |
+
change_f0,
|
| 2024 |
+
[if_f0_3, sr2, version19],
|
| 2025 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
| 2026 |
+
)
|
| 2027 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
| 2028 |
+
but3.click(
|
| 2029 |
+
click_train,
|
| 2030 |
+
[
|
| 2031 |
+
exp_dir1,
|
| 2032 |
+
sr2,
|
| 2033 |
+
if_f0_3,
|
| 2034 |
+
spk_id5,
|
| 2035 |
+
save_epoch10,
|
| 2036 |
+
total_epoch11,
|
| 2037 |
+
batch_size12,
|
| 2038 |
+
if_save_latest13,
|
| 2039 |
+
pretrained_G14,
|
| 2040 |
+
pretrained_D15,
|
| 2041 |
+
gpus16,
|
| 2042 |
+
if_cache_gpu17,
|
| 2043 |
+
if_save_every_weights18,
|
| 2044 |
+
version19,
|
| 2045 |
+
],
|
| 2046 |
+
[
|
| 2047 |
+
info3,
|
| 2048 |
+
butstop,
|
| 2049 |
+
but3,
|
| 2050 |
+
],
|
| 2051 |
+
)
|
| 2052 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
| 2053 |
+
but5.click(
|
| 2054 |
+
train1key,
|
| 2055 |
+
[
|
| 2056 |
+
exp_dir1,
|
| 2057 |
+
sr2,
|
| 2058 |
+
if_f0_3,
|
| 2059 |
+
trainset_dir4,
|
| 2060 |
+
spk_id5,
|
| 2061 |
+
np7,
|
| 2062 |
+
f0method8,
|
| 2063 |
+
save_epoch10,
|
| 2064 |
+
total_epoch11,
|
| 2065 |
+
batch_size12,
|
| 2066 |
+
if_save_latest13,
|
| 2067 |
+
pretrained_G14,
|
| 2068 |
+
pretrained_D15,
|
| 2069 |
+
gpus16,
|
| 2070 |
+
if_cache_gpu17,
|
| 2071 |
+
if_save_every_weights18,
|
| 2072 |
+
version19,
|
| 2073 |
+
extraction_crepe_hop_length
|
| 2074 |
+
],
|
| 2075 |
+
info3,
|
| 2076 |
+
)
|
| 2077 |
+
|
| 2078 |
+
else:
|
| 2079 |
+
print(
|
| 2080 |
+
"Pretrained weights not downloaded. Disabling training tab.\n"
|
| 2081 |
+
"Wondering how to train a voice? Visit here for the RVC model training guide: https://t.ly/RVC_Training_Guide\n"
|
| 2082 |
+
"-------------------------------\n"
|
| 2083 |
+
)
|
| 2084 |
+
|
| 2085 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
|
| 2086 |
+
#endregion
|
config.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
from multiprocessing import cpu_count
|
| 6 |
+
|
| 7 |
+
global usefp16
|
| 8 |
+
usefp16 = False
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def use_fp32_config():
|
| 12 |
+
usefp16 = False
|
| 13 |
+
device_capability = 0
|
| 14 |
+
if torch.cuda.is_available():
|
| 15 |
+
device = torch.device("cuda:0") # Assuming you have only one GPU (index 0).
|
| 16 |
+
device_capability = torch.cuda.get_device_capability(device)[0]
|
| 17 |
+
if device_capability >= 7:
|
| 18 |
+
usefp16 = True
|
| 19 |
+
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
| 20 |
+
with open(f"configs/{config_file}", "r") as d:
|
| 21 |
+
data = json.load(d)
|
| 22 |
+
|
| 23 |
+
if "train" in data and "fp16_run" in data["train"]:
|
| 24 |
+
data["train"]["fp16_run"] = True
|
| 25 |
+
|
| 26 |
+
with open(f"configs/{config_file}", "w") as d:
|
| 27 |
+
json.dump(data, d, indent=4)
|
| 28 |
+
|
| 29 |
+
print(f"Set fp16_run to true in {config_file}")
|
| 30 |
+
|
| 31 |
+
with open(
|
| 32 |
+
"trainset_preprocess_pipeline_print.py", "r", encoding="utf-8"
|
| 33 |
+
) as f:
|
| 34 |
+
strr = f.read()
|
| 35 |
+
|
| 36 |
+
strr = strr.replace("3.0", "3.7")
|
| 37 |
+
|
| 38 |
+
with open(
|
| 39 |
+
"trainset_preprocess_pipeline_print.py", "w", encoding="utf-8"
|
| 40 |
+
) as f:
|
| 41 |
+
f.write(strr)
|
| 42 |
+
else:
|
| 43 |
+
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
| 44 |
+
with open(f"configs/{config_file}", "r") as f:
|
| 45 |
+
data = json.load(f)
|
| 46 |
+
|
| 47 |
+
if "train" in data and "fp16_run" in data["train"]:
|
| 48 |
+
data["train"]["fp16_run"] = False
|
| 49 |
+
|
| 50 |
+
with open(f"configs/{config_file}", "w") as d:
|
| 51 |
+
json.dump(data, d, indent=4)
|
| 52 |
+
|
| 53 |
+
print(f"Set fp16_run to false in {config_file}")
|
| 54 |
+
|
| 55 |
+
with open(
|
| 56 |
+
"trainset_preprocess_pipeline_print.py", "r", encoding="utf-8"
|
| 57 |
+
) as f:
|
| 58 |
+
strr = f.read()
|
| 59 |
+
|
| 60 |
+
strr = strr.replace("3.7", "3.0")
|
| 61 |
+
|
| 62 |
+
with open(
|
| 63 |
+
"trainset_preprocess_pipeline_print.py", "w", encoding="utf-8"
|
| 64 |
+
) as f:
|
| 65 |
+
f.write(strr)
|
| 66 |
+
else:
|
| 67 |
+
print(
|
| 68 |
+
"CUDA is not available. Make sure you have an NVIDIA GPU and CUDA installed."
|
| 69 |
+
)
|
| 70 |
+
return (usefp16, device_capability)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class Config:
|
| 74 |
+
def __init__(self):
|
| 75 |
+
self.device = "cuda:0"
|
| 76 |
+
self.is_half = True
|
| 77 |
+
self.n_cpu = 0
|
| 78 |
+
self.gpu_name = None
|
| 79 |
+
self.gpu_mem = None
|
| 80 |
+
(
|
| 81 |
+
self.python_cmd,
|
| 82 |
+
self.listen_port,
|
| 83 |
+
self.iscolab,
|
| 84 |
+
self.noparallel,
|
| 85 |
+
self.noautoopen,
|
| 86 |
+
self.paperspace,
|
| 87 |
+
self.is_cli,
|
| 88 |
+
) = self.arg_parse()
|
| 89 |
+
|
| 90 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
| 91 |
+
|
| 92 |
+
@staticmethod
|
| 93 |
+
def arg_parse() -> tuple:
|
| 94 |
+
exe = sys.executable or "python"
|
| 95 |
+
parser = argparse.ArgumentParser()
|
| 96 |
+
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
| 97 |
+
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
| 98 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
| 99 |
+
parser.add_argument(
|
| 100 |
+
"--noparallel", action="store_true", help="Disable parallel processing"
|
| 101 |
+
)
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"--noautoopen",
|
| 104 |
+
action="store_true",
|
| 105 |
+
help="Do not open in browser automatically",
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument( # Fork Feature. Paperspace integration for web UI
|
| 108 |
+
"--paperspace",
|
| 109 |
+
action="store_true",
|
| 110 |
+
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.",
|
| 111 |
+
)
|
| 112 |
+
parser.add_argument( # Fork Feature. Embed a CLI into the infer-web.py
|
| 113 |
+
"--is_cli",
|
| 114 |
+
action="store_true",
|
| 115 |
+
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!",
|
| 116 |
+
)
|
| 117 |
+
cmd_opts = parser.parse_args()
|
| 118 |
+
|
| 119 |
+
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
| 120 |
+
|
| 121 |
+
return (
|
| 122 |
+
cmd_opts.pycmd,
|
| 123 |
+
cmd_opts.port,
|
| 124 |
+
cmd_opts.colab,
|
| 125 |
+
cmd_opts.noparallel,
|
| 126 |
+
cmd_opts.noautoopen,
|
| 127 |
+
cmd_opts.paperspace,
|
| 128 |
+
cmd_opts.is_cli,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
| 132 |
+
# check `getattr` and try it for compatibility
|
| 133 |
+
@staticmethod
|
| 134 |
+
def has_mps() -> bool:
|
| 135 |
+
if not torch.backends.mps.is_available():
|
| 136 |
+
return False
|
| 137 |
+
try:
|
| 138 |
+
torch.zeros(1).to(torch.device("mps"))
|
| 139 |
+
return True
|
| 140 |
+
except Exception:
|
| 141 |
+
return False
|
| 142 |
+
|
| 143 |
+
def device_config(self) -> tuple:
|
| 144 |
+
if torch.cuda.is_available():
|
| 145 |
+
i_device = int(self.device.split(":")[-1])
|
| 146 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
| 147 |
+
if (
|
| 148 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
| 149 |
+
or "P40" in self.gpu_name.upper()
|
| 150 |
+
or "1060" in self.gpu_name
|
| 151 |
+
or "1070" in self.gpu_name
|
| 152 |
+
or "1080" in self.gpu_name
|
| 153 |
+
):
|
| 154 |
+
print("Found GPU", self.gpu_name, ", force to fp32")
|
| 155 |
+
self.is_half = False
|
| 156 |
+
else:
|
| 157 |
+
print("Found GPU", self.gpu_name)
|
| 158 |
+
use_fp32_config()
|
| 159 |
+
self.gpu_mem = int(
|
| 160 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
| 161 |
+
/ 1024
|
| 162 |
+
/ 1024
|
| 163 |
+
/ 1024
|
| 164 |
+
+ 0.4
|
| 165 |
+
)
|
| 166 |
+
if self.gpu_mem <= 4:
|
| 167 |
+
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
| 168 |
+
strr = f.read().replace("3.7", "3.0")
|
| 169 |
+
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
| 170 |
+
f.write(strr)
|
| 171 |
+
elif self.has_mps():
|
| 172 |
+
print("No supported Nvidia GPU found, use MPS instead")
|
| 173 |
+
self.device = "mps"
|
| 174 |
+
self.is_half = False
|
| 175 |
+
use_fp32_config()
|
| 176 |
+
else:
|
| 177 |
+
print("No supported Nvidia GPU found, use CPU instead")
|
| 178 |
+
self.device = "cpu"
|
| 179 |
+
self.is_half = False
|
| 180 |
+
use_fp32_config()
|
| 181 |
+
|
| 182 |
+
if self.n_cpu == 0:
|
| 183 |
+
self.n_cpu = cpu_count()
|
| 184 |
+
|
| 185 |
+
if self.is_half:
|
| 186 |
+
# 6G显存配置
|
| 187 |
+
x_pad = 3
|
| 188 |
+
x_query = 10
|
| 189 |
+
x_center = 60
|
| 190 |
+
x_max = 65
|
| 191 |
+
else:
|
| 192 |
+
# 5G显存配置
|
| 193 |
+
x_pad = 1
|
| 194 |
+
x_query = 6
|
| 195 |
+
x_center = 38
|
| 196 |
+
x_max = 41
|
| 197 |
+
|
| 198 |
+
if self.gpu_mem != None and self.gpu_mem <= 4:
|
| 199 |
+
x_pad = 1
|
| 200 |
+
x_query = 5
|
| 201 |
+
x_center = 30
|
| 202 |
+
x_max = 32
|
| 203 |
+
|
| 204 |
+
return x_pad, x_query, x_center, x_max
|
gitattributes.txt
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
gitignore.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
weights/
|
| 3 |
+
TEMP/
|
| 4 |
+
logs/
|
| 5 |
+
csvdb/
|
| 6 |
+
|
| 7 |
+
# Environment
|
| 8 |
+
venv/
|
| 9 |
+
|
| 10 |
+
# Models
|
| 11 |
+
hubert_base.pt
|
| 12 |
+
rmvpe.pt
|
i18n.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import locale
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def load_language_list(language):
|
| 7 |
+
with open(f"./i18n/{language}.json", "r", encoding="utf-8") as f:
|
| 8 |
+
language_list = json.load(f)
|
| 9 |
+
return language_list
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class I18nAuto:
|
| 13 |
+
def __init__(self, language=None):
|
| 14 |
+
if language in ["Auto", None]:
|
| 15 |
+
language = locale.getdefaultlocale()[
|
| 16 |
+
0
|
| 17 |
+
] # getlocale can't identify the system's language ((None, None))
|
| 18 |
+
if not os.path.exists(f"./i18n/{language}.json"):
|
| 19 |
+
language = "en_US"
|
| 20 |
+
self.language = language
|
| 21 |
+
# print("Use Language:", language)
|
| 22 |
+
self.language_map = load_language_list(language)
|
| 23 |
+
|
| 24 |
+
def __call__(self, key):
|
| 25 |
+
return self.language_map.get(key, key)
|
| 26 |
+
|
| 27 |
+
def print(self):
|
| 28 |
+
print("Use Language:", self.language)
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
build-essential
|
| 2 |
+
ffmpeg
|
| 3 |
+
aria2
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gTTS
|
| 2 |
+
elevenlabs
|
| 3 |
+
stftpitchshift==1.5.1
|
| 4 |
+
torchcrepe
|
| 5 |
+
setuptools
|
| 6 |
+
wheel
|
| 7 |
+
httpx==0.23.0
|
| 8 |
+
faiss-gpu
|
| 9 |
+
fairseq
|
| 10 |
+
gradio==3.34.0
|
| 11 |
+
ffmpeg-python
|
| 12 |
+
praat-parselmouth
|
| 13 |
+
pyworld
|
| 14 |
+
numpy==1.23.5
|
| 15 |
+
i18n
|
| 16 |
+
numba==0.56.4
|
| 17 |
+
librosa==0.9.2
|
| 18 |
+
mega.py
|
| 19 |
+
gdown
|
| 20 |
+
onnxruntime
|
| 21 |
+
pyngrok==4.1.12
|
| 22 |
+
torch
|
rmvpe.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, torch, numpy as np, traceback, pdb
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from time import time as ttime
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BiGRU(nn.Module):
|
| 8 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
| 9 |
+
super(BiGRU, self).__init__()
|
| 10 |
+
self.gru = nn.GRU(
|
| 11 |
+
input_features,
|
| 12 |
+
hidden_features,
|
| 13 |
+
num_layers=num_layers,
|
| 14 |
+
batch_first=True,
|
| 15 |
+
bidirectional=True,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def forward(self, x):
|
| 19 |
+
return self.gru(x)[0]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ConvBlockRes(nn.Module):
|
| 23 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
| 24 |
+
super(ConvBlockRes, self).__init__()
|
| 25 |
+
self.conv = nn.Sequential(
|
| 26 |
+
nn.Conv2d(
|
| 27 |
+
in_channels=in_channels,
|
| 28 |
+
out_channels=out_channels,
|
| 29 |
+
kernel_size=(3, 3),
|
| 30 |
+
stride=(1, 1),
|
| 31 |
+
padding=(1, 1),
|
| 32 |
+
bias=False,
|
| 33 |
+
),
|
| 34 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 35 |
+
nn.ReLU(),
|
| 36 |
+
nn.Conv2d(
|
| 37 |
+
in_channels=out_channels,
|
| 38 |
+
out_channels=out_channels,
|
| 39 |
+
kernel_size=(3, 3),
|
| 40 |
+
stride=(1, 1),
|
| 41 |
+
padding=(1, 1),
|
| 42 |
+
bias=False,
|
| 43 |
+
),
|
| 44 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 45 |
+
nn.ReLU(),
|
| 46 |
+
)
|
| 47 |
+
if in_channels != out_channels:
|
| 48 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
| 49 |
+
self.is_shortcut = True
|
| 50 |
+
else:
|
| 51 |
+
self.is_shortcut = False
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
if self.is_shortcut:
|
| 55 |
+
return self.conv(x) + self.shortcut(x)
|
| 56 |
+
else:
|
| 57 |
+
return self.conv(x) + x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Encoder(nn.Module):
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
in_channels,
|
| 64 |
+
in_size,
|
| 65 |
+
n_encoders,
|
| 66 |
+
kernel_size,
|
| 67 |
+
n_blocks,
|
| 68 |
+
out_channels=16,
|
| 69 |
+
momentum=0.01,
|
| 70 |
+
):
|
| 71 |
+
super(Encoder, self).__init__()
|
| 72 |
+
self.n_encoders = n_encoders
|
| 73 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
| 74 |
+
self.layers = nn.ModuleList()
|
| 75 |
+
self.latent_channels = []
|
| 76 |
+
for i in range(self.n_encoders):
|
| 77 |
+
self.layers.append(
|
| 78 |
+
ResEncoderBlock(
|
| 79 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
| 80 |
+
)
|
| 81 |
+
)
|
| 82 |
+
self.latent_channels.append([out_channels, in_size])
|
| 83 |
+
in_channels = out_channels
|
| 84 |
+
out_channels *= 2
|
| 85 |
+
in_size //= 2
|
| 86 |
+
self.out_size = in_size
|
| 87 |
+
self.out_channel = out_channels
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
concat_tensors = []
|
| 91 |
+
x = self.bn(x)
|
| 92 |
+
for i in range(self.n_encoders):
|
| 93 |
+
_, x = self.layers[i](x)
|
| 94 |
+
concat_tensors.append(_)
|
| 95 |
+
return x, concat_tensors
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class ResEncoderBlock(nn.Module):
|
| 99 |
+
def __init__(
|
| 100 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
| 101 |
+
):
|
| 102 |
+
super(ResEncoderBlock, self).__init__()
|
| 103 |
+
self.n_blocks = n_blocks
|
| 104 |
+
self.conv = nn.ModuleList()
|
| 105 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
| 106 |
+
for i in range(n_blocks - 1):
|
| 107 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 108 |
+
self.kernel_size = kernel_size
|
| 109 |
+
if self.kernel_size is not None:
|
| 110 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
for i in range(self.n_blocks):
|
| 114 |
+
x = self.conv[i](x)
|
| 115 |
+
if self.kernel_size is not None:
|
| 116 |
+
return x, self.pool(x)
|
| 117 |
+
else:
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class Intermediate(nn.Module): #
|
| 122 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
| 123 |
+
super(Intermediate, self).__init__()
|
| 124 |
+
self.n_inters = n_inters
|
| 125 |
+
self.layers = nn.ModuleList()
|
| 126 |
+
self.layers.append(
|
| 127 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
| 128 |
+
)
|
| 129 |
+
for i in range(self.n_inters - 1):
|
| 130 |
+
self.layers.append(
|
| 131 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def forward(self, x):
|
| 135 |
+
for i in range(self.n_inters):
|
| 136 |
+
x = self.layers[i](x)
|
| 137 |
+
return x
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class ResDecoderBlock(nn.Module):
|
| 141 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
| 142 |
+
super(ResDecoderBlock, self).__init__()
|
| 143 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
| 144 |
+
self.n_blocks = n_blocks
|
| 145 |
+
self.conv1 = nn.Sequential(
|
| 146 |
+
nn.ConvTranspose2d(
|
| 147 |
+
in_channels=in_channels,
|
| 148 |
+
out_channels=out_channels,
|
| 149 |
+
kernel_size=(3, 3),
|
| 150 |
+
stride=stride,
|
| 151 |
+
padding=(1, 1),
|
| 152 |
+
output_padding=out_padding,
|
| 153 |
+
bias=False,
|
| 154 |
+
),
|
| 155 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 156 |
+
nn.ReLU(),
|
| 157 |
+
)
|
| 158 |
+
self.conv2 = nn.ModuleList()
|
| 159 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
| 160 |
+
for i in range(n_blocks - 1):
|
| 161 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 162 |
+
|
| 163 |
+
def forward(self, x, concat_tensor):
|
| 164 |
+
x = self.conv1(x)
|
| 165 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
| 166 |
+
for i in range(self.n_blocks):
|
| 167 |
+
x = self.conv2[i](x)
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class Decoder(nn.Module):
|
| 172 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
| 173 |
+
super(Decoder, self).__init__()
|
| 174 |
+
self.layers = nn.ModuleList()
|
| 175 |
+
self.n_decoders = n_decoders
|
| 176 |
+
for i in range(self.n_decoders):
|
| 177 |
+
out_channels = in_channels // 2
|
| 178 |
+
self.layers.append(
|
| 179 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
| 180 |
+
)
|
| 181 |
+
in_channels = out_channels
|
| 182 |
+
|
| 183 |
+
def forward(self, x, concat_tensors):
|
| 184 |
+
for i in range(self.n_decoders):
|
| 185 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
| 186 |
+
return x
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class DeepUnet(nn.Module):
|
| 190 |
+
def __init__(
|
| 191 |
+
self,
|
| 192 |
+
kernel_size,
|
| 193 |
+
n_blocks,
|
| 194 |
+
en_de_layers=5,
|
| 195 |
+
inter_layers=4,
|
| 196 |
+
in_channels=1,
|
| 197 |
+
en_out_channels=16,
|
| 198 |
+
):
|
| 199 |
+
super(DeepUnet, self).__init__()
|
| 200 |
+
self.encoder = Encoder(
|
| 201 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
| 202 |
+
)
|
| 203 |
+
self.intermediate = Intermediate(
|
| 204 |
+
self.encoder.out_channel // 2,
|
| 205 |
+
self.encoder.out_channel,
|
| 206 |
+
inter_layers,
|
| 207 |
+
n_blocks,
|
| 208 |
+
)
|
| 209 |
+
self.decoder = Decoder(
|
| 210 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
def forward(self, x):
|
| 214 |
+
x, concat_tensors = self.encoder(x)
|
| 215 |
+
x = self.intermediate(x)
|
| 216 |
+
x = self.decoder(x, concat_tensors)
|
| 217 |
+
return x
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class E2E(nn.Module):
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
n_blocks,
|
| 224 |
+
n_gru,
|
| 225 |
+
kernel_size,
|
| 226 |
+
en_de_layers=5,
|
| 227 |
+
inter_layers=4,
|
| 228 |
+
in_channels=1,
|
| 229 |
+
en_out_channels=16,
|
| 230 |
+
):
|
| 231 |
+
super(E2E, self).__init__()
|
| 232 |
+
self.unet = DeepUnet(
|
| 233 |
+
kernel_size,
|
| 234 |
+
n_blocks,
|
| 235 |
+
en_de_layers,
|
| 236 |
+
inter_layers,
|
| 237 |
+
in_channels,
|
| 238 |
+
en_out_channels,
|
| 239 |
+
)
|
| 240 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
| 241 |
+
if n_gru:
|
| 242 |
+
self.fc = nn.Sequential(
|
| 243 |
+
BiGRU(3 * 128, 256, n_gru),
|
| 244 |
+
nn.Linear(512, 360),
|
| 245 |
+
nn.Dropout(0.25),
|
| 246 |
+
nn.Sigmoid(),
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
self.fc = nn.Sequential(
|
| 250 |
+
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
def forward(self, mel):
|
| 254 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
| 255 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
| 256 |
+
x = self.fc(x)
|
| 257 |
+
return x
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
from librosa.filters import mel
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
class MelSpectrogram(torch.nn.Module):
|
| 264 |
+
def __init__(
|
| 265 |
+
self,
|
| 266 |
+
is_half,
|
| 267 |
+
n_mel_channels,
|
| 268 |
+
sampling_rate,
|
| 269 |
+
win_length,
|
| 270 |
+
hop_length,
|
| 271 |
+
n_fft=None,
|
| 272 |
+
mel_fmin=0,
|
| 273 |
+
mel_fmax=None,
|
| 274 |
+
clamp=1e-5,
|
| 275 |
+
):
|
| 276 |
+
super().__init__()
|
| 277 |
+
n_fft = win_length if n_fft is None else n_fft
|
| 278 |
+
self.hann_window = {}
|
| 279 |
+
mel_basis = mel(
|
| 280 |
+
sr=sampling_rate,
|
| 281 |
+
n_fft=n_fft,
|
| 282 |
+
n_mels=n_mel_channels,
|
| 283 |
+
fmin=mel_fmin,
|
| 284 |
+
fmax=mel_fmax,
|
| 285 |
+
htk=True,
|
| 286 |
+
)
|
| 287 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
| 288 |
+
self.register_buffer("mel_basis", mel_basis)
|
| 289 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
| 290 |
+
self.hop_length = hop_length
|
| 291 |
+
self.win_length = win_length
|
| 292 |
+
self.sampling_rate = sampling_rate
|
| 293 |
+
self.n_mel_channels = n_mel_channels
|
| 294 |
+
self.clamp = clamp
|
| 295 |
+
self.is_half = is_half
|
| 296 |
+
|
| 297 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
| 298 |
+
factor = 2 ** (keyshift / 12)
|
| 299 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
| 300 |
+
win_length_new = int(np.round(self.win_length * factor))
|
| 301 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
| 302 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
| 303 |
+
if keyshift_key not in self.hann_window:
|
| 304 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
| 305 |
+
audio.device
|
| 306 |
+
)
|
| 307 |
+
fft = torch.stft(
|
| 308 |
+
audio,
|
| 309 |
+
n_fft=n_fft_new,
|
| 310 |
+
hop_length=hop_length_new,
|
| 311 |
+
win_length=win_length_new,
|
| 312 |
+
window=self.hann_window[keyshift_key],
|
| 313 |
+
center=center,
|
| 314 |
+
return_complex=True,
|
| 315 |
+
)
|
| 316 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
| 317 |
+
if keyshift != 0:
|
| 318 |
+
size = self.n_fft // 2 + 1
|
| 319 |
+
resize = magnitude.size(1)
|
| 320 |
+
if resize < size:
|
| 321 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
| 322 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
| 323 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
| 324 |
+
if self.is_half == True:
|
| 325 |
+
mel_output = mel_output.half()
|
| 326 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
| 327 |
+
return log_mel_spec
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class RMVPE:
|
| 331 |
+
def __init__(self, model_path, is_half, device=None):
|
| 332 |
+
self.resample_kernel = {}
|
| 333 |
+
model = E2E(4, 1, (2, 2))
|
| 334 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
| 335 |
+
model.load_state_dict(ckpt)
|
| 336 |
+
model.eval()
|
| 337 |
+
if is_half == True:
|
| 338 |
+
model = model.half()
|
| 339 |
+
self.model = model
|
| 340 |
+
self.resample_kernel = {}
|
| 341 |
+
self.is_half = is_half
|
| 342 |
+
if device is None:
|
| 343 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 344 |
+
self.device = device
|
| 345 |
+
self.mel_extractor = MelSpectrogram(
|
| 346 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
| 347 |
+
).to(device)
|
| 348 |
+
self.model = self.model.to(device)
|
| 349 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
| 350 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
| 351 |
+
|
| 352 |
+
def mel2hidden(self, mel):
|
| 353 |
+
with torch.no_grad():
|
| 354 |
+
n_frames = mel.shape[-1]
|
| 355 |
+
mel = F.pad(
|
| 356 |
+
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
| 357 |
+
)
|
| 358 |
+
hidden = self.model(mel)
|
| 359 |
+
return hidden[:, :n_frames]
|
| 360 |
+
|
| 361 |
+
def decode(self, hidden, thred=0.03):
|
| 362 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
| 363 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
| 364 |
+
f0[f0 == 10] = 0
|
| 365 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
| 366 |
+
return f0
|
| 367 |
+
|
| 368 |
+
def infer_from_audio(self, audio, thred=0.03):
|
| 369 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
| 370 |
+
# torch.cuda.synchronize()
|
| 371 |
+
# t0=ttime()
|
| 372 |
+
mel = self.mel_extractor(audio, center=True)
|
| 373 |
+
# torch.cuda.synchronize()
|
| 374 |
+
# t1=ttime()
|
| 375 |
+
hidden = self.mel2hidden(mel)
|
| 376 |
+
# torch.cuda.synchronize()
|
| 377 |
+
# t2=ttime()
|
| 378 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
| 379 |
+
if self.is_half == True:
|
| 380 |
+
hidden = hidden.astype("float32")
|
| 381 |
+
f0 = self.decode(hidden, thred=thred)
|
| 382 |
+
# torch.cuda.synchronize()
|
| 383 |
+
# t3=ttime()
|
| 384 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
| 385 |
+
return f0
|
| 386 |
+
|
| 387 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
| 388 |
+
# t0 = ttime()
|
| 389 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
| 390 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
| 391 |
+
# t1 = ttime()
|
| 392 |
+
center += 4
|
| 393 |
+
todo_salience = []
|
| 394 |
+
todo_cents_mapping = []
|
| 395 |
+
starts = center - 4
|
| 396 |
+
ends = center + 5
|
| 397 |
+
for idx in range(salience.shape[0]):
|
| 398 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
| 399 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
| 400 |
+
# t2 = ttime()
|
| 401 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
| 402 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
| 403 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
| 404 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
| 405 |
+
devided = product_sum / weight_sum # 帧长
|
| 406 |
+
# t3 = ttime()
|
| 407 |
+
maxx = np.max(salience, axis=1) # 帧长
|
| 408 |
+
devided[maxx <= thred] = 0
|
| 409 |
+
# t4 = ttime()
|
| 410 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
| 411 |
+
return devided
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# if __name__ == '__main__':
|
| 415 |
+
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
| 416 |
+
# if len(audio.shape) > 1:
|
| 417 |
+
# audio = librosa.to_mono(audio.transpose(1, 0))
|
| 418 |
+
# audio_bak = audio.copy()
|
| 419 |
+
# if sampling_rate != 16000:
|
| 420 |
+
# audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 421 |
+
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
|
| 422 |
+
# thred = 0.03 # 0.01
|
| 423 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 424 |
+
# rmvpe = RMVPE(model_path,is_half=False, device=device)
|
| 425 |
+
# t0=ttime()
|
| 426 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 427 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 428 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 429 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 430 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
| 431 |
+
# t1=ttime()
|
| 432 |
+
# print(f0.shape,t1-t0)
|
run.sh
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Install Debian packages
|
| 2 |
+
sudo apt-get update
|
| 3 |
+
sudo apt-get install -qq -y build-essential ffmpeg aria2
|
| 4 |
+
|
| 5 |
+
# Upgrade pip and setuptools
|
| 6 |
+
pip install --upgrade pip
|
| 7 |
+
pip install --upgrade setuptools
|
| 8 |
+
|
| 9 |
+
# Install wheel package (built-package format for Python)
|
| 10 |
+
pip install wheel
|
| 11 |
+
|
| 12 |
+
# Install Python packages using pip
|
| 13 |
+
pip install -r requirements.txt
|
| 14 |
+
|
| 15 |
+
# Run application locally at http://127.0.0.1:7860
|
| 16 |
+
python app.py
|
utils.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ffmpeg
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
# import praatio
|
| 5 |
+
# import praatio.praat_scripts
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
import random
|
| 10 |
+
|
| 11 |
+
import csv
|
| 12 |
+
|
| 13 |
+
platform_stft_mapping = {
|
| 14 |
+
"linux": "stftpitchshift",
|
| 15 |
+
"darwin": "stftpitchshift",
|
| 16 |
+
"win32": "stftpitchshift.exe",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
stft = platform_stft_mapping.get(sys.platform)
|
| 20 |
+
# praatEXE = join('.',os.path.abspath(os.getcwd()) + r"\Praat.exe")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def CSVutil(file, rw, type, *args):
|
| 24 |
+
if type == "formanting":
|
| 25 |
+
if rw == "r":
|
| 26 |
+
with open(file) as fileCSVread:
|
| 27 |
+
csv_reader = list(csv.reader(fileCSVread))
|
| 28 |
+
return (
|
| 29 |
+
(csv_reader[0][0], csv_reader[0][1], csv_reader[0][2])
|
| 30 |
+
if csv_reader is not None
|
| 31 |
+
else (lambda: exec('raise ValueError("No data")'))()
|
| 32 |
+
)
|
| 33 |
+
else:
|
| 34 |
+
if args:
|
| 35 |
+
doformnt = args[0]
|
| 36 |
+
else:
|
| 37 |
+
doformnt = False
|
| 38 |
+
qfr = args[1] if len(args) > 1 else 1.0
|
| 39 |
+
tmb = args[2] if len(args) > 2 else 1.0
|
| 40 |
+
with open(file, rw, newline="") as fileCSVwrite:
|
| 41 |
+
csv_writer = csv.writer(fileCSVwrite, delimiter=",")
|
| 42 |
+
csv_writer.writerow([doformnt, qfr, tmb])
|
| 43 |
+
elif type == "stop":
|
| 44 |
+
stop = args[0] if args else False
|
| 45 |
+
with open(file, rw, newline="") as fileCSVwrite:
|
| 46 |
+
csv_writer = csv.writer(fileCSVwrite, delimiter=",")
|
| 47 |
+
csv_writer.writerow([stop])
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def load_audio(file, sr, DoFormant, Quefrency, Timbre):
|
| 51 |
+
converted = False
|
| 52 |
+
DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting")
|
| 53 |
+
try:
|
| 54 |
+
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
| 55 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
| 56 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
| 57 |
+
file = (
|
| 58 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 59 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
| 60 |
+
file_formanted = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 61 |
+
|
| 62 |
+
# print(f"dofor={bool(DoFormant)} timbr={Timbre} quef={Quefrency}\n")
|
| 63 |
+
|
| 64 |
+
if (
|
| 65 |
+
lambda DoFormant: True
|
| 66 |
+
if DoFormant.lower() == "true"
|
| 67 |
+
else (False if DoFormant.lower() == "false" else DoFormant)
|
| 68 |
+
)(DoFormant):
|
| 69 |
+
numerator = round(random.uniform(1, 4), 4)
|
| 70 |
+
# os.system(f"stftpitchshift -i {file} -q {Quefrency} -t {Timbre} -o {file_formanted}")
|
| 71 |
+
# print('stftpitchshift -i "%s" -p 1.0 --rms -w 128 -v 8 -q %s -t %s -o "%s"' % (file, Quefrency, Timbre, file_formanted))
|
| 72 |
+
|
| 73 |
+
if not file.endswith(".wav"):
|
| 74 |
+
if not os.path.isfile(f"{file_formanted}.wav"):
|
| 75 |
+
converted = True
|
| 76 |
+
# print(f"\nfile = {file}\n")
|
| 77 |
+
# print(f"\nfile_formanted = {file_formanted}\n")
|
| 78 |
+
converting = (
|
| 79 |
+
ffmpeg.input(file_formanted, threads=0)
|
| 80 |
+
.output(f"{file_formanted}.wav")
|
| 81 |
+
.run(
|
| 82 |
+
cmd=["ffmpeg", "-nostdin"],
|
| 83 |
+
capture_stdout=True,
|
| 84 |
+
capture_stderr=True,
|
| 85 |
+
)
|
| 86 |
+
)
|
| 87 |
+
else:
|
| 88 |
+
pass
|
| 89 |
+
|
| 90 |
+
file_formanted = (
|
| 91 |
+
f"{file_formanted}.wav"
|
| 92 |
+
if not file_formanted.endswith(".wav")
|
| 93 |
+
else file_formanted
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
print(f" · Formanting {file_formanted}...\n")
|
| 97 |
+
|
| 98 |
+
os.system(
|
| 99 |
+
'%s -i "%s" -q "%s" -t "%s" -o "%sFORMANTED_%s.wav"'
|
| 100 |
+
% (
|
| 101 |
+
stft,
|
| 102 |
+
file_formanted,
|
| 103 |
+
Quefrency,
|
| 104 |
+
Timbre,
|
| 105 |
+
file_formanted,
|
| 106 |
+
str(numerator),
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
print(f" · Formanted {file_formanted}!\n")
|
| 111 |
+
|
| 112 |
+
# filepraat = (os.path.abspath(os.getcwd()) + '\\' + file).replace('/','\\')
|
| 113 |
+
# file_formantedpraat = ('"' + os.path.abspath(os.getcwd()) + '/' + 'formanted'.join(file_formanted) + '"').replace('/','\\')
|
| 114 |
+
# print("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
|
| 115 |
+
|
| 116 |
+
out, _ = (
|
| 117 |
+
ffmpeg.input(
|
| 118 |
+
"%sFORMANTED_%s.wav" % (file_formanted, str(numerator)), threads=0
|
| 119 |
+
)
|
| 120 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
| 121 |
+
.run(
|
| 122 |
+
cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
|
| 123 |
+
)
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
os.remove("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
|
| 128 |
+
except Exception:
|
| 129 |
+
pass
|
| 130 |
+
print("couldn't remove formanted type of file")
|
| 131 |
+
|
| 132 |
+
else:
|
| 133 |
+
out, _ = (
|
| 134 |
+
ffmpeg.input(file, threads=0)
|
| 135 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
| 136 |
+
.run(
|
| 137 |
+
cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
|
| 138 |
+
)
|
| 139 |
+
)
|
| 140 |
+
except Exception as e:
|
| 141 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
| 142 |
+
|
| 143 |
+
if converted:
|
| 144 |
+
try:
|
| 145 |
+
os.remove(file_formanted)
|
| 146 |
+
except Exception:
|
| 147 |
+
pass
|
| 148 |
+
print("couldn't remove converted type of file")
|
| 149 |
+
converted = False
|
| 150 |
+
|
| 151 |
+
return np.frombuffer(out, np.float32).flatten()
|
vc_infer_pipeline.py
ADDED
|
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np, parselmouth, torch, pdb, sys, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torchcrepe # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import scipy.signal as signal
|
| 7 |
+
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
| 8 |
+
from scipy import signal
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
|
| 11 |
+
now_dir = os.getcwd()
|
| 12 |
+
sys.path.append(now_dir)
|
| 13 |
+
|
| 14 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 15 |
+
|
| 16 |
+
input_audio_path2wav = {}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@lru_cache
|
| 20 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
| 21 |
+
audio = input_audio_path2wav[input_audio_path]
|
| 22 |
+
f0, t = pyworld.harvest(
|
| 23 |
+
audio,
|
| 24 |
+
fs=fs,
|
| 25 |
+
f0_ceil=f0max,
|
| 26 |
+
f0_floor=f0min,
|
| 27 |
+
frame_period=frame_period,
|
| 28 |
+
)
|
| 29 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
| 30 |
+
return f0
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
| 34 |
+
# print(data1.max(),data2.max())
|
| 35 |
+
rms1 = librosa.feature.rms(
|
| 36 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
| 37 |
+
) # 每半秒一个点
|
| 38 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
| 39 |
+
rms1 = torch.from_numpy(rms1)
|
| 40 |
+
rms1 = F.interpolate(
|
| 41 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 42 |
+
).squeeze()
|
| 43 |
+
rms2 = torch.from_numpy(rms2)
|
| 44 |
+
rms2 = F.interpolate(
|
| 45 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
| 46 |
+
).squeeze()
|
| 47 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
| 48 |
+
data2 *= (
|
| 49 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
| 50 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
| 51 |
+
).numpy()
|
| 52 |
+
return data2
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class VC(object):
|
| 56 |
+
def __init__(self, tgt_sr, config):
|
| 57 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
| 58 |
+
config.x_pad,
|
| 59 |
+
config.x_query,
|
| 60 |
+
config.x_center,
|
| 61 |
+
config.x_max,
|
| 62 |
+
config.is_half,
|
| 63 |
+
)
|
| 64 |
+
self.sr = 16000 # hubert输入采样率
|
| 65 |
+
self.window = 160 # 每帧点数
|
| 66 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
| 67 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 68 |
+
self.t_pad2 = self.t_pad * 2
|
| 69 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
| 70 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
| 71 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 72 |
+
self.device = config.device
|
| 73 |
+
|
| 74 |
+
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
| 75 |
+
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
| 76 |
+
# Get cuda device
|
| 77 |
+
if torch.cuda.is_available():
|
| 78 |
+
return torch.device(
|
| 79 |
+
f"cuda:{index % torch.cuda.device_count()}"
|
| 80 |
+
) # Very fast
|
| 81 |
+
elif torch.backends.mps.is_available():
|
| 82 |
+
return torch.device("mps")
|
| 83 |
+
# Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
|
| 84 |
+
# Else wise return the "cpu" as a torch device,
|
| 85 |
+
return torch.device("cpu")
|
| 86 |
+
|
| 87 |
+
# Fork Feature: Compute f0 with the crepe method
|
| 88 |
+
def get_f0_crepe_computation(
|
| 89 |
+
self,
|
| 90 |
+
x,
|
| 91 |
+
f0_min,
|
| 92 |
+
f0_max,
|
| 93 |
+
p_len,
|
| 94 |
+
hop_length=160, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
| 95 |
+
model="full", # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
| 96 |
+
):
|
| 97 |
+
x = x.astype(
|
| 98 |
+
np.float32
|
| 99 |
+
) # fixes the F.conv2D exception. We needed to convert double to float.
|
| 100 |
+
x /= np.quantile(np.abs(x), 0.999)
|
| 101 |
+
torch_device = self.get_optimal_torch_device()
|
| 102 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
| 103 |
+
audio = torch.unsqueeze(audio, dim=0)
|
| 104 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 105 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 106 |
+
audio = audio.detach()
|
| 107 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
| 108 |
+
pitch: Tensor = torchcrepe.predict(
|
| 109 |
+
audio,
|
| 110 |
+
self.sr,
|
| 111 |
+
hop_length,
|
| 112 |
+
f0_min,
|
| 113 |
+
f0_max,
|
| 114 |
+
model,
|
| 115 |
+
batch_size=hop_length * 2,
|
| 116 |
+
device=torch_device,
|
| 117 |
+
pad=True,
|
| 118 |
+
)
|
| 119 |
+
p_len = p_len or x.shape[0] // hop_length
|
| 120 |
+
# Resize the pitch for final f0
|
| 121 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 122 |
+
source[source < 0.001] = np.nan
|
| 123 |
+
target = np.interp(
|
| 124 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 125 |
+
np.arange(0, len(source)),
|
| 126 |
+
source,
|
| 127 |
+
)
|
| 128 |
+
f0 = np.nan_to_num(target)
|
| 129 |
+
return f0 # Resized f0
|
| 130 |
+
|
| 131 |
+
def get_f0_official_crepe_computation(
|
| 132 |
+
self,
|
| 133 |
+
x,
|
| 134 |
+
f0_min,
|
| 135 |
+
f0_max,
|
| 136 |
+
model="full",
|
| 137 |
+
):
|
| 138 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
| 139 |
+
batch_size = 512
|
| 140 |
+
# Compute pitch using first gpu
|
| 141 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 142 |
+
f0, pd = torchcrepe.predict(
|
| 143 |
+
audio,
|
| 144 |
+
self.sr,
|
| 145 |
+
self.window,
|
| 146 |
+
f0_min,
|
| 147 |
+
f0_max,
|
| 148 |
+
model,
|
| 149 |
+
batch_size=batch_size,
|
| 150 |
+
device=self.device,
|
| 151 |
+
return_periodicity=True,
|
| 152 |
+
)
|
| 153 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 154 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 155 |
+
f0[pd < 0.1] = 0
|
| 156 |
+
f0 = f0[0].cpu().numpy()
|
| 157 |
+
return f0
|
| 158 |
+
|
| 159 |
+
# Fork Feature: Compute pYIN f0 method
|
| 160 |
+
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
| 161 |
+
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
| 162 |
+
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
| 163 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 164 |
+
return f0
|
| 165 |
+
|
| 166 |
+
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
| 167 |
+
def get_f0_hybrid_computation(
|
| 168 |
+
self,
|
| 169 |
+
methods_str,
|
| 170 |
+
input_audio_path,
|
| 171 |
+
x,
|
| 172 |
+
f0_min,
|
| 173 |
+
f0_max,
|
| 174 |
+
p_len,
|
| 175 |
+
filter_radius,
|
| 176 |
+
crepe_hop_length,
|
| 177 |
+
time_step,
|
| 178 |
+
):
|
| 179 |
+
# Get various f0 methods from input to use in the computation stack
|
| 180 |
+
s = methods_str
|
| 181 |
+
s = s.split("hybrid")[1]
|
| 182 |
+
s = s.replace("[", "").replace("]", "")
|
| 183 |
+
methods = s.split("+")
|
| 184 |
+
f0_computation_stack = []
|
| 185 |
+
|
| 186 |
+
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
| 187 |
+
x = x.astype(np.float32)
|
| 188 |
+
x /= np.quantile(np.abs(x), 0.999)
|
| 189 |
+
# Get f0 calculations for all methods specified
|
| 190 |
+
for method in methods:
|
| 191 |
+
f0 = None
|
| 192 |
+
if method == "pm":
|
| 193 |
+
f0 = (
|
| 194 |
+
parselmouth.Sound(x, self.sr)
|
| 195 |
+
.to_pitch_ac(
|
| 196 |
+
time_step=time_step / 1000,
|
| 197 |
+
voicing_threshold=0.6,
|
| 198 |
+
pitch_floor=f0_min,
|
| 199 |
+
pitch_ceiling=f0_max,
|
| 200 |
+
)
|
| 201 |
+
.selected_array["frequency"]
|
| 202 |
+
)
|
| 203 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 204 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 205 |
+
f0 = np.pad(
|
| 206 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 207 |
+
)
|
| 208 |
+
elif method == "crepe":
|
| 209 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
| 210 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 211 |
+
elif method == "crepe-tiny":
|
| 212 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
| 213 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 214 |
+
elif method == "mangio-crepe":
|
| 215 |
+
f0 = self.get_f0_crepe_computation(
|
| 216 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
| 217 |
+
)
|
| 218 |
+
elif method == "mangio-crepe-tiny":
|
| 219 |
+
f0 = self.get_f0_crepe_computation(
|
| 220 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
| 221 |
+
)
|
| 222 |
+
elif method == "harvest":
|
| 223 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 224 |
+
if filter_radius > 2:
|
| 225 |
+
f0 = signal.medfilt(f0, 3)
|
| 226 |
+
f0 = f0[1:] # Get rid of first frame.
|
| 227 |
+
elif method == "dio": # Potentially buggy?
|
| 228 |
+
f0, t = pyworld.dio(
|
| 229 |
+
x.astype(np.double),
|
| 230 |
+
fs=self.sr,
|
| 231 |
+
f0_ceil=f0_max,
|
| 232 |
+
f0_floor=f0_min,
|
| 233 |
+
frame_period=10,
|
| 234 |
+
)
|
| 235 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 236 |
+
f0 = signal.medfilt(f0, 3)
|
| 237 |
+
f0 = f0[1:]
|
| 238 |
+
# elif method == "pyin": Not Working just yet
|
| 239 |
+
# f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
|
| 240 |
+
# Push method to the stack
|
| 241 |
+
f0_computation_stack.append(f0)
|
| 242 |
+
|
| 243 |
+
for fc in f0_computation_stack:
|
| 244 |
+
print(len(fc))
|
| 245 |
+
|
| 246 |
+
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
| 247 |
+
f0_median_hybrid = None
|
| 248 |
+
if len(f0_computation_stack) == 1:
|
| 249 |
+
f0_median_hybrid = f0_computation_stack[0]
|
| 250 |
+
else:
|
| 251 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
| 252 |
+
return f0_median_hybrid
|
| 253 |
+
|
| 254 |
+
def get_f0(
|
| 255 |
+
self,
|
| 256 |
+
input_audio_path,
|
| 257 |
+
x,
|
| 258 |
+
p_len,
|
| 259 |
+
f0_up_key,
|
| 260 |
+
f0_method,
|
| 261 |
+
filter_radius,
|
| 262 |
+
crepe_hop_length,
|
| 263 |
+
inp_f0=None,
|
| 264 |
+
):
|
| 265 |
+
global input_audio_path2wav
|
| 266 |
+
time_step = self.window / self.sr * 1000
|
| 267 |
+
f0_min = 50
|
| 268 |
+
f0_max = 1100
|
| 269 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 270 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 271 |
+
if f0_method == "pm":
|
| 272 |
+
f0 = (
|
| 273 |
+
parselmouth.Sound(x, self.sr)
|
| 274 |
+
.to_pitch_ac(
|
| 275 |
+
time_step=time_step / 1000,
|
| 276 |
+
voicing_threshold=0.6,
|
| 277 |
+
pitch_floor=f0_min,
|
| 278 |
+
pitch_ceiling=f0_max,
|
| 279 |
+
)
|
| 280 |
+
.selected_array["frequency"]
|
| 281 |
+
)
|
| 282 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 283 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 284 |
+
f0 = np.pad(
|
| 285 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 286 |
+
)
|
| 287 |
+
elif f0_method == "harvest":
|
| 288 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
| 289 |
+
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
| 290 |
+
if filter_radius > 2:
|
| 291 |
+
f0 = signal.medfilt(f0, 3)
|
| 292 |
+
elif f0_method == "dio": # Potentially Buggy?
|
| 293 |
+
f0, t = pyworld.dio(
|
| 294 |
+
x.astype(np.double),
|
| 295 |
+
fs=self.sr,
|
| 296 |
+
f0_ceil=f0_max,
|
| 297 |
+
f0_floor=f0_min,
|
| 298 |
+
frame_period=10,
|
| 299 |
+
)
|
| 300 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
| 301 |
+
f0 = signal.medfilt(f0, 3)
|
| 302 |
+
elif f0_method == "crepe":
|
| 303 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
| 304 |
+
elif f0_method == "crepe-tiny":
|
| 305 |
+
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
|
| 306 |
+
elif f0_method == "mangio-crepe":
|
| 307 |
+
f0 = self.get_f0_crepe_computation(
|
| 308 |
+
x, f0_min, f0_max, p_len, crepe_hop_length
|
| 309 |
+
)
|
| 310 |
+
elif f0_method == "mangio-crepe-tiny":
|
| 311 |
+
f0 = self.get_f0_crepe_computation(
|
| 312 |
+
x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
|
| 313 |
+
)
|
| 314 |
+
elif f0_method == "rmvpe":
|
| 315 |
+
if hasattr(self, "model_rmvpe") == False:
|
| 316 |
+
from rmvpe import RMVPE
|
| 317 |
+
|
| 318 |
+
print("loading rmvpe model")
|
| 319 |
+
self.model_rmvpe = RMVPE(
|
| 320 |
+
"rmvpe.pt", is_half=self.is_half, device=self.device
|
| 321 |
+
)
|
| 322 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
| 323 |
+
|
| 324 |
+
elif "hybrid" in f0_method:
|
| 325 |
+
# Perform hybrid median pitch estimation
|
| 326 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
| 327 |
+
f0 = self.get_f0_hybrid_computation(
|
| 328 |
+
f0_method,
|
| 329 |
+
input_audio_path,
|
| 330 |
+
x,
|
| 331 |
+
f0_min,
|
| 332 |
+
f0_max,
|
| 333 |
+
p_len,
|
| 334 |
+
filter_radius,
|
| 335 |
+
crepe_hop_length,
|
| 336 |
+
time_step,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 340 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 341 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
| 342 |
+
if inp_f0 is not None:
|
| 343 |
+
delta_t = np.round(
|
| 344 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 345 |
+
).astype("int16")
|
| 346 |
+
replace_f0 = np.interp(
|
| 347 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 348 |
+
)
|
| 349 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 350 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 351 |
+
:shape
|
| 352 |
+
]
|
| 353 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 354 |
+
f0bak = f0.copy()
|
| 355 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 356 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 357 |
+
f0_mel_max - f0_mel_min
|
| 358 |
+
) + 1
|
| 359 |
+
f0_mel[f0_mel <= 1] = 1
|
| 360 |
+
f0_mel[f0_mel > 255] = 255
|
| 361 |
+
f0_coarse = np.rint(f0_mel).astype(np.int)
|
| 362 |
+
|
| 363 |
+
return f0_coarse, f0bak # 1-0
|
| 364 |
+
|
| 365 |
+
def vc(
|
| 366 |
+
self,
|
| 367 |
+
model,
|
| 368 |
+
net_g,
|
| 369 |
+
sid,
|
| 370 |
+
audio0,
|
| 371 |
+
pitch,
|
| 372 |
+
pitchf,
|
| 373 |
+
times,
|
| 374 |
+
index,
|
| 375 |
+
big_npy,
|
| 376 |
+
index_rate,
|
| 377 |
+
version,
|
| 378 |
+
protect,
|
| 379 |
+
): # ,file_index,file_big_npy
|
| 380 |
+
feats = torch.from_numpy(audio0)
|
| 381 |
+
if self.is_half:
|
| 382 |
+
feats = feats.half()
|
| 383 |
+
else:
|
| 384 |
+
feats = feats.float()
|
| 385 |
+
if feats.dim() == 2: # double channels
|
| 386 |
+
feats = feats.mean(-1)
|
| 387 |
+
assert feats.dim() == 1, feats.dim()
|
| 388 |
+
feats = feats.view(1, -1)
|
| 389 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 390 |
+
|
| 391 |
+
inputs = {
|
| 392 |
+
"source": feats.to(self.device),
|
| 393 |
+
"padding_mask": padding_mask,
|
| 394 |
+
"output_layer": 9 if version == "v1" else 12,
|
| 395 |
+
}
|
| 396 |
+
t0 = ttime()
|
| 397 |
+
with torch.no_grad():
|
| 398 |
+
logits = model.extract_features(**inputs)
|
| 399 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
| 400 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 401 |
+
feats0 = feats.clone()
|
| 402 |
+
if (
|
| 403 |
+
isinstance(index, type(None)) == False
|
| 404 |
+
and isinstance(big_npy, type(None)) == False
|
| 405 |
+
and index_rate != 0
|
| 406 |
+
):
|
| 407 |
+
npy = feats[0].cpu().numpy()
|
| 408 |
+
if self.is_half:
|
| 409 |
+
npy = npy.astype("float32")
|
| 410 |
+
|
| 411 |
+
# _, I = index.search(npy, 1)
|
| 412 |
+
# npy = big_npy[I.squeeze()]
|
| 413 |
+
|
| 414 |
+
score, ix = index.search(npy, k=8)
|
| 415 |
+
weight = np.square(1 / score)
|
| 416 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 417 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 418 |
+
|
| 419 |
+
if self.is_half:
|
| 420 |
+
npy = npy.astype("float16")
|
| 421 |
+
feats = (
|
| 422 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 423 |
+
+ (1 - index_rate) * feats
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 427 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 428 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
| 429 |
+
0, 2, 1
|
| 430 |
+
)
|
| 431 |
+
t1 = ttime()
|
| 432 |
+
p_len = audio0.shape[0] // self.window
|
| 433 |
+
if feats.shape[1] < p_len:
|
| 434 |
+
p_len = feats.shape[1]
|
| 435 |
+
if pitch != None and pitchf != None:
|
| 436 |
+
pitch = pitch[:, :p_len]
|
| 437 |
+
pitchf = pitchf[:, :p_len]
|
| 438 |
+
|
| 439 |
+
if protect < 0.5 and pitch != None and pitchf != None:
|
| 440 |
+
pitchff = pitchf.clone()
|
| 441 |
+
pitchff[pitchf > 0] = 1
|
| 442 |
+
pitchff[pitchf < 1] = protect
|
| 443 |
+
pitchff = pitchff.unsqueeze(-1)
|
| 444 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
| 445 |
+
feats = feats.to(feats0.dtype)
|
| 446 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 447 |
+
with torch.no_grad():
|
| 448 |
+
if pitch != None and pitchf != None:
|
| 449 |
+
audio1 = (
|
| 450 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
| 451 |
+
.data.cpu()
|
| 452 |
+
.float()
|
| 453 |
+
.numpy()
|
| 454 |
+
)
|
| 455 |
+
else:
|
| 456 |
+
audio1 = (
|
| 457 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
| 458 |
+
)
|
| 459 |
+
del feats, p_len, padding_mask
|
| 460 |
+
if torch.cuda.is_available():
|
| 461 |
+
torch.cuda.empty_cache()
|
| 462 |
+
t2 = ttime()
|
| 463 |
+
times[0] += t1 - t0
|
| 464 |
+
times[2] += t2 - t1
|
| 465 |
+
return audio1
|
| 466 |
+
|
| 467 |
+
def pipeline(
|
| 468 |
+
self,
|
| 469 |
+
model,
|
| 470 |
+
net_g,
|
| 471 |
+
sid,
|
| 472 |
+
audio,
|
| 473 |
+
input_audio_path,
|
| 474 |
+
times,
|
| 475 |
+
f0_up_key,
|
| 476 |
+
f0_method,
|
| 477 |
+
file_index,
|
| 478 |
+
# file_big_npy,
|
| 479 |
+
index_rate,
|
| 480 |
+
if_f0,
|
| 481 |
+
filter_radius,
|
| 482 |
+
tgt_sr,
|
| 483 |
+
resample_sr,
|
| 484 |
+
rms_mix_rate,
|
| 485 |
+
version,
|
| 486 |
+
protect,
|
| 487 |
+
crepe_hop_length,
|
| 488 |
+
f0_file=None,
|
| 489 |
+
):
|
| 490 |
+
if (
|
| 491 |
+
file_index != ""
|
| 492 |
+
# and file_big_npy != ""
|
| 493 |
+
# and os.path.exists(file_big_npy) == True
|
| 494 |
+
and os.path.exists(file_index) == True
|
| 495 |
+
and index_rate != 0
|
| 496 |
+
):
|
| 497 |
+
try:
|
| 498 |
+
index = faiss.read_index(file_index)
|
| 499 |
+
# big_npy = np.load(file_big_npy)
|
| 500 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 501 |
+
except:
|
| 502 |
+
traceback.print_exc()
|
| 503 |
+
index = big_npy = None
|
| 504 |
+
else:
|
| 505 |
+
index = big_npy = None
|
| 506 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 507 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 508 |
+
opt_ts = []
|
| 509 |
+
if audio_pad.shape[0] > self.t_max:
|
| 510 |
+
audio_sum = np.zeros_like(audio)
|
| 511 |
+
for i in range(self.window):
|
| 512 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 513 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 514 |
+
opt_ts.append(
|
| 515 |
+
t
|
| 516 |
+
- self.t_query
|
| 517 |
+
+ np.where(
|
| 518 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 519 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 520 |
+
)[0][0]
|
| 521 |
+
)
|
| 522 |
+
s = 0
|
| 523 |
+
audio_opt = []
|
| 524 |
+
t = None
|
| 525 |
+
t1 = ttime()
|
| 526 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 527 |
+
p_len = audio_pad.shape[0] // self.window
|
| 528 |
+
inp_f0 = None
|
| 529 |
+
if hasattr(f0_file, "name") == True:
|
| 530 |
+
try:
|
| 531 |
+
with open(f0_file.name, "r") as f:
|
| 532 |
+
lines = f.read().strip("\n").split("\n")
|
| 533 |
+
inp_f0 = []
|
| 534 |
+
for line in lines:
|
| 535 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 536 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 537 |
+
except:
|
| 538 |
+
traceback.print_exc()
|
| 539 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 540 |
+
pitch, pitchf = None, None
|
| 541 |
+
if if_f0 == 1:
|
| 542 |
+
pitch, pitchf = self.get_f0(
|
| 543 |
+
input_audio_path,
|
| 544 |
+
audio_pad,
|
| 545 |
+
p_len,
|
| 546 |
+
f0_up_key,
|
| 547 |
+
f0_method,
|
| 548 |
+
filter_radius,
|
| 549 |
+
crepe_hop_length,
|
| 550 |
+
inp_f0,
|
| 551 |
+
)
|
| 552 |
+
pitch = pitch[:p_len]
|
| 553 |
+
pitchf = pitchf[:p_len]
|
| 554 |
+
if self.device == "mps":
|
| 555 |
+
pitchf = pitchf.astype(np.float32)
|
| 556 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 557 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 558 |
+
t2 = ttime()
|
| 559 |
+
times[1] += t2 - t1
|
| 560 |
+
for t in opt_ts:
|
| 561 |
+
t = t // self.window * self.window
|
| 562 |
+
if if_f0 == 1:
|
| 563 |
+
audio_opt.append(
|
| 564 |
+
self.vc(
|
| 565 |
+
model,
|
| 566 |
+
net_g,
|
| 567 |
+
sid,
|
| 568 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 569 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 570 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 571 |
+
times,
|
| 572 |
+
index,
|
| 573 |
+
big_npy,
|
| 574 |
+
index_rate,
|
| 575 |
+
version,
|
| 576 |
+
protect,
|
| 577 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 578 |
+
)
|
| 579 |
+
else:
|
| 580 |
+
audio_opt.append(
|
| 581 |
+
self.vc(
|
| 582 |
+
model,
|
| 583 |
+
net_g,
|
| 584 |
+
sid,
|
| 585 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 586 |
+
None,
|
| 587 |
+
None,
|
| 588 |
+
times,
|
| 589 |
+
index,
|
| 590 |
+
big_npy,
|
| 591 |
+
index_rate,
|
| 592 |
+
version,
|
| 593 |
+
protect,
|
| 594 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 595 |
+
)
|
| 596 |
+
s = t
|
| 597 |
+
if if_f0 == 1:
|
| 598 |
+
audio_opt.append(
|
| 599 |
+
self.vc(
|
| 600 |
+
model,
|
| 601 |
+
net_g,
|
| 602 |
+
sid,
|
| 603 |
+
audio_pad[t:],
|
| 604 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 605 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 606 |
+
times,
|
| 607 |
+
index,
|
| 608 |
+
big_npy,
|
| 609 |
+
index_rate,
|
| 610 |
+
version,
|
| 611 |
+
protect,
|
| 612 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 613 |
+
)
|
| 614 |
+
else:
|
| 615 |
+
audio_opt.append(
|
| 616 |
+
self.vc(
|
| 617 |
+
model,
|
| 618 |
+
net_g,
|
| 619 |
+
sid,
|
| 620 |
+
audio_pad[t:],
|
| 621 |
+
None,
|
| 622 |
+
None,
|
| 623 |
+
times,
|
| 624 |
+
index,
|
| 625 |
+
big_npy,
|
| 626 |
+
index_rate,
|
| 627 |
+
version,
|
| 628 |
+
protect,
|
| 629 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 630 |
+
)
|
| 631 |
+
audio_opt = np.concatenate(audio_opt)
|
| 632 |
+
if rms_mix_rate != 1:
|
| 633 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
| 634 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 635 |
+
audio_opt = librosa.resample(
|
| 636 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 637 |
+
)
|
| 638 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
| 639 |
+
max_int16 = 32768
|
| 640 |
+
if audio_max > 1:
|
| 641 |
+
max_int16 /= audio_max
|
| 642 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
| 643 |
+
del pitch, pitchf, sid
|
| 644 |
+
if torch.cuda.is_available():
|
| 645 |
+
torch.cuda.empty_cache()
|
| 646 |
+
return audio_opt
|