Spaces:
Build error
Build error
diegulio
commited on
Commit
·
e4e17fb
1
Parent(s):
c5d2e12
multiprocess and examples
Browse files- cedula/app.py +16 -2
- examples/.DS_Store +0 -0
- examples/cedula1.jpg +0 -0
- examples/license1.jpg +0 -0
- license/app.py +10 -2
cedula/app.py
CHANGED
|
@@ -7,6 +7,7 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
from pathlib import Path
|
|
|
|
| 10 |
|
| 11 |
from models.experimental import attempt_load
|
| 12 |
from utils.datasets import LoadImage
|
|
@@ -17,6 +18,9 @@ import cv2
|
|
| 17 |
|
| 18 |
key = str(os.environ.get('key'))
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def check_image(image):
|
| 21 |
try:
|
| 22 |
images = convert_from_path(Path(image.name), fmt="jpeg", size=(960,1280))
|
|
@@ -94,8 +98,8 @@ def crop(files = '', #files
|
|
| 94 |
def get_attributes(input_img):
|
| 95 |
#access_token = str(os.environ.get('key'))
|
| 96 |
access_token = key
|
| 97 |
-
processor = DonutProcessor.from_pretrained("ClipAI/
|
| 98 |
-
model = VisionEncoderDecoderModel.from_pretrained("ClipAI/
|
| 99 |
|
| 100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 101 |
|
|
@@ -143,6 +147,16 @@ def get_attributes(input_img):
|
|
| 143 |
#demo.launch()
|
| 144 |
|
| 145 |
def create_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
with gr.Blocks() as demo:
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column():
|
|
|
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
from pathlib import Path
|
| 10 |
+
import multiprocessing
|
| 11 |
|
| 12 |
from models.experimental import attempt_load
|
| 13 |
from utils.datasets import LoadImage
|
|
|
|
| 18 |
|
| 19 |
key = str(os.environ.get('key'))
|
| 20 |
|
| 21 |
+
desired_num_threads = multiprocessing.cpu_count()
|
| 22 |
+
torch.set_num_threads(desired_num_threads)
|
| 23 |
+
|
| 24 |
def check_image(image):
|
| 25 |
try:
|
| 26 |
images = convert_from_path(Path(image.name), fmt="jpeg", size=(960,1280))
|
|
|
|
| 98 |
def get_attributes(input_img):
|
| 99 |
#access_token = str(os.environ.get('key'))
|
| 100 |
access_token = key
|
| 101 |
+
processor = DonutProcessor.from_pretrained("ClipAI/cedula-demo", use_auth_token=access_token)
|
| 102 |
+
model = VisionEncoderDecoderModel.from_pretrained("ClipAI/cedula-demo", use_auth_token=access_token)
|
| 103 |
|
| 104 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
|
|
|
|
| 147 |
#demo.launch()
|
| 148 |
|
| 149 |
def create_model():
|
| 150 |
+
demo = gr.Interface(get_attributes,
|
| 151 |
+
"image",
|
| 152 |
+
"json",
|
| 153 |
+
examples=[["examples/cedula1.jpg"]]
|
| 154 |
+
)
|
| 155 |
+
return demo
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def create_model2():
|
| 160 |
with gr.Blocks() as demo:
|
| 161 |
with gr.Row():
|
| 162 |
with gr.Column():
|
examples/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
examples/cedula1.jpg
ADDED
|
examples/license1.jpg
ADDED
|
license/app.py
CHANGED
|
@@ -7,6 +7,7 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
from pathlib import Path
|
|
|
|
| 10 |
|
| 11 |
from models.experimental import attempt_load
|
| 12 |
from utils.datasets import LoadImage
|
|
@@ -17,6 +18,9 @@ import cv2
|
|
| 17 |
|
| 18 |
key = str(os.environ.get('key'))
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def check_image(image):
|
| 21 |
try:
|
| 22 |
images = convert_from_path(Path(image.name), fmt="jpeg", size=(960,1280))
|
|
@@ -141,10 +145,14 @@ def get_attributes(input_img):
|
|
| 141 |
#demo.launch()
|
| 142 |
|
| 143 |
def create_model():
|
| 144 |
-
demo = gr.Interface(get_attributes,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
return demo
|
| 146 |
|
| 147 |
-
|
| 148 |
if __name__ == '__main__':
|
| 149 |
demo = create_model()
|
| 150 |
demo.launch()
|
|
|
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
| 9 |
from pathlib import Path
|
| 10 |
+
import multiprocessing
|
| 11 |
|
| 12 |
from models.experimental import attempt_load
|
| 13 |
from utils.datasets import LoadImage
|
|
|
|
| 18 |
|
| 19 |
key = str(os.environ.get('key'))
|
| 20 |
|
| 21 |
+
desired_num_threads = multiprocessing.cpu_count()
|
| 22 |
+
torch.set_num_threads(desired_num_threads)
|
| 23 |
+
|
| 24 |
def check_image(image):
|
| 25 |
try:
|
| 26 |
images = convert_from_path(Path(image.name), fmt="jpeg", size=(960,1280))
|
|
|
|
| 145 |
#demo.launch()
|
| 146 |
|
| 147 |
def create_model():
|
| 148 |
+
demo = gr.Interface(get_attributes,
|
| 149 |
+
"image",
|
| 150 |
+
"json",
|
| 151 |
+
examples=[["examples/license1.jpg"]]
|
| 152 |
+
)
|
| 153 |
return demo
|
| 154 |
|
| 155 |
+
["examples/licencia.jpg"]
|
| 156 |
if __name__ == '__main__':
|
| 157 |
demo = create_model()
|
| 158 |
demo.launch()
|