Spaces:
Paused
Paused
| import atexit | |
| from distutils.version import StrictVersion | |
| import numpy as np | |
| import os | |
| import subprocess | |
| from typing import Dict, List, Optional, Tuple, Mapping as MappingType | |
| import mlagents_envs | |
| from mlagents_envs.logging_util import get_logger | |
| from mlagents_envs.side_channel.side_channel import SideChannel | |
| from mlagents_envs.side_channel import DefaultTrainingAnalyticsSideChannel | |
| from mlagents_envs.side_channel.side_channel_manager import SideChannelManager | |
| from mlagents_envs import env_utils | |
| from mlagents_envs.base_env import ( | |
| BaseEnv, | |
| DecisionSteps, | |
| TerminalSteps, | |
| BehaviorSpec, | |
| ActionTuple, | |
| BehaviorName, | |
| AgentId, | |
| BehaviorMapping, | |
| ) | |
| from mlagents_envs.timers import timed, hierarchical_timer | |
| from mlagents_envs.exception import ( | |
| UnityEnvironmentException, | |
| UnityActionException, | |
| UnityTimeOutException, | |
| UnityCommunicatorStoppedException, | |
| ) | |
| from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET | |
| from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto | |
| from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto | |
| from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto | |
| from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto | |
| from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto | |
| from mlagents_envs.communicator_objects.capabilities_pb2 import UnityRLCapabilitiesProto | |
| from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import ( | |
| UnityRLInitializationInputProto, | |
| ) | |
| from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto | |
| from .rpc_communicator import RpcCommunicator | |
| import signal | |
| logger = get_logger(__name__) | |
| class UnityEnvironment(BaseEnv): | |
| # Communication protocol version. | |
| # When connecting to C#, this must be compatible with Academy.k_ApiVersion. | |
| # We follow semantic versioning on the communication version, so existing | |
| # functionality will work as long the major versions match. | |
| # This should be changed whenever a change is made to the communication protocol. | |
| # Revision history: | |
| # * 1.0.0 - initial version | |
| # * 1.1.0 - support concatenated PNGs for compressed observations. | |
| # * 1.2.0 - support compression mapping for stacked compressed observations. | |
| # * 1.3.0 - support action spaces with both continuous and discrete actions. | |
| # * 1.4.0 - support training analytics sent from python trainer to the editor. | |
| # * 1.5.0 - support variable length observation training and multi-agent groups. | |
| API_VERSION = "1.5.0" | |
| # Default port that the editor listens on. If an environment executable | |
| # isn't specified, this port will be used. | |
| DEFAULT_EDITOR_PORT = 5004 | |
| # Default base port for environments. Each environment will be offset from this | |
| # by it's worker_id. | |
| BASE_ENVIRONMENT_PORT = 5005 | |
| # Command line argument used to pass the port to the executable environment. | |
| _PORT_COMMAND_LINE_ARG = "--mlagents-port" | |
| def _raise_version_exception(unity_com_ver: str) -> None: | |
| raise UnityEnvironmentException( | |
| f"The communication API version is not compatible between Unity and python. " | |
| f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_com_ver}.\n " | |
| f"Please find the versions that work best together from our release page.\n" | |
| "https://github.com/Unity-Technologies/ml-agents/releases" | |
| ) | |
| def _check_communication_compatibility( | |
| unity_com_ver: str, python_api_version: str, unity_package_version: str | |
| ) -> bool: | |
| unity_communicator_version = StrictVersion(unity_com_ver) | |
| api_version = StrictVersion(python_api_version) | |
| if unity_communicator_version.version[0] == 0: | |
| if ( | |
| unity_communicator_version.version[0] != api_version.version[0] | |
| or unity_communicator_version.version[1] != api_version.version[1] | |
| ): | |
| # Minor beta versions differ. | |
| return False | |
| elif unity_communicator_version.version[0] != api_version.version[0]: | |
| # Major versions mismatch. | |
| return False | |
| else: | |
| # Major versions match, so either: | |
| # 1) The versions are identical, in which case there's no compatibility issues | |
| # 2) The Unity version is newer, in which case we'll warn or fail on the Unity side if trying to use | |
| # unsupported features | |
| # 3) The trainer version is newer, in which case new trainer features might be available but unused by C# | |
| # In any of the cases, there's no reason to warn about mismatch here. | |
| logger.info( | |
| f"Connected to Unity environment with package version {unity_package_version} " | |
| f"and communication version {unity_com_ver}" | |
| ) | |
| return True | |
| def _get_capabilities_proto() -> UnityRLCapabilitiesProto: | |
| capabilities = UnityRLCapabilitiesProto() | |
| capabilities.baseRLCapabilities = True | |
| capabilities.concatenatedPngObservations = True | |
| capabilities.compressedChannelMapping = True | |
| capabilities.hybridActions = True | |
| capabilities.trainingAnalytics = True | |
| capabilities.variableLengthObservation = True | |
| capabilities.multiAgentGroups = True | |
| return capabilities | |
| def _warn_csharp_base_capabilities( | |
| caps: UnityRLCapabilitiesProto, unity_package_ver: str, python_package_ver: str | |
| ) -> None: | |
| if not caps.baseRLCapabilities: | |
| logger.warning( | |
| "WARNING: The Unity process is not running with the expected base Reinforcement Learning" | |
| " capabilities. Please be sure upgrade the Unity Package to a version that is compatible with this " | |
| "python package.\n" | |
| f"Python package version: {python_package_ver}, C# package version: {unity_package_ver}" | |
| f"Please find the versions that work best together from our release page.\n" | |
| "https://github.com/Unity-Technologies/ml-agents/releases" | |
| ) | |
| def __init__( | |
| self, | |
| file_name: Optional[str] = None, | |
| worker_id: int = 0, | |
| base_port: Optional[int] = None, | |
| seed: int = 0, | |
| no_graphics: bool = False, | |
| timeout_wait: int = 60, | |
| additional_args: Optional[List[str]] = None, | |
| side_channels: Optional[List[SideChannel]] = None, | |
| log_folder: Optional[str] = None, | |
| num_areas: int = 1, | |
| ): | |
| """ | |
| Starts a new unity environment and establishes a connection with the environment. | |
| Notice: Currently communication between Unity and Python takes place over an open socket without authentication. | |
| Ensure that the network where training takes place is secure. | |
| :string file_name: Name of Unity environment binary. | |
| :int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. | |
| If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used. | |
| :int worker_id: Offset from base_port. Used for training multiple environments simultaneously. | |
| :bool no_graphics: Whether to run the Unity simulator in no-graphics mode | |
| :int timeout_wait: Time (in seconds) to wait for connection from environment. | |
| :list args: Addition Unity command line arguments | |
| :list side_channels: Additional side channel for no-rl communication with Unity | |
| :str log_folder: Optional folder to write the Unity Player log file into. Requires absolute path. | |
| """ | |
| atexit.register(self._close) | |
| self._additional_args = additional_args or [] | |
| self._no_graphics = no_graphics | |
| # If base port is not specified, use BASE_ENVIRONMENT_PORT if we have | |
| # an environment, otherwise DEFAULT_EDITOR_PORT | |
| if base_port is None: | |
| base_port = ( | |
| self.BASE_ENVIRONMENT_PORT if file_name else self.DEFAULT_EDITOR_PORT | |
| ) | |
| self._port = base_port + worker_id | |
| self._buffer_size = 12000 | |
| # If true, this means the environment was successfully loaded | |
| self._loaded = False | |
| # The process that is started. If None, no process was started | |
| self._process: Optional[subprocess.Popen] = None | |
| self._timeout_wait: int = timeout_wait | |
| self._communicator = self._get_communicator(worker_id, base_port, timeout_wait) | |
| self._worker_id = worker_id | |
| if side_channels is None: | |
| side_channels = [] | |
| default_training_side_channel: Optional[ | |
| DefaultTrainingAnalyticsSideChannel | |
| ] = None | |
| if DefaultTrainingAnalyticsSideChannel.CHANNEL_ID not in [ | |
| _.channel_id for _ in side_channels | |
| ]: | |
| default_training_side_channel = DefaultTrainingAnalyticsSideChannel() | |
| side_channels.append(default_training_side_channel) | |
| self._side_channel_manager = SideChannelManager(side_channels) | |
| self._log_folder = log_folder | |
| self.academy_capabilities: UnityRLCapabilitiesProto = None # type: ignore | |
| # If the environment name is None, a new environment will not be launched | |
| # and the communicator will directly try to connect to an existing unity environment. | |
| # If the worker-id is not 0 and the environment name is None, an error is thrown | |
| if file_name is None and worker_id != 0: | |
| raise UnityEnvironmentException( | |
| "If the environment name is None, " | |
| "the worker-id must be 0 in order to connect with the Editor." | |
| ) | |
| if file_name is not None: | |
| try: | |
| self._process = env_utils.launch_executable( | |
| file_name, self._executable_args() | |
| ) | |
| except UnityEnvironmentException: | |
| self._close(0) | |
| raise | |
| else: | |
| logger.info( | |
| f"Listening on port {self._port}. " | |
| f"Start training by pressing the Play button in the Unity Editor." | |
| ) | |
| self._loaded = True | |
| rl_init_parameters_in = UnityRLInitializationInputProto( | |
| seed=seed, | |
| communication_version=self.API_VERSION, | |
| package_version=mlagents_envs.__version__, | |
| capabilities=UnityEnvironment._get_capabilities_proto(), | |
| num_areas=num_areas, | |
| ) | |
| try: | |
| aca_output = self._send_academy_parameters(rl_init_parameters_in) | |
| aca_params = aca_output.rl_initialization_output | |
| except UnityTimeOutException: | |
| self._close(0) | |
| raise | |
| if not UnityEnvironment._check_communication_compatibility( | |
| aca_params.communication_version, | |
| UnityEnvironment.API_VERSION, | |
| aca_params.package_version, | |
| ): | |
| self._close(0) | |
| UnityEnvironment._raise_version_exception(aca_params.communication_version) | |
| UnityEnvironment._warn_csharp_base_capabilities( | |
| aca_params.capabilities, | |
| aca_params.package_version, | |
| UnityEnvironment.API_VERSION, | |
| ) | |
| self._env_state: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {} | |
| self._env_specs: Dict[str, BehaviorSpec] = {} | |
| self._env_actions: Dict[str, ActionTuple] = {} | |
| self._is_first_message = True | |
| self._update_behavior_specs(aca_output) | |
| self.academy_capabilities = aca_params.capabilities | |
| if default_training_side_channel is not None: | |
| default_training_side_channel.environment_initialized() | |
| def _get_communicator(worker_id, base_port, timeout_wait): | |
| return RpcCommunicator(worker_id, base_port, timeout_wait) | |
| def _executable_args(self) -> List[str]: | |
| args: List[str] = [] | |
| if self._no_graphics: | |
| args += ["-nographics", "-batchmode"] | |
| args += [UnityEnvironment._PORT_COMMAND_LINE_ARG, str(self._port)] | |
| # If the logfile arg isn't already set in the env args, | |
| # try to set it to an output directory | |
| logfile_set = "-logfile" in (arg.lower() for arg in self._additional_args) | |
| if self._log_folder and not logfile_set: | |
| log_file_path = os.path.join( | |
| self._log_folder, f"Player-{self._worker_id}.log" | |
| ) | |
| args += ["-logFile", log_file_path] | |
| # Add in arguments passed explicitly by the user. | |
| args += self._additional_args | |
| return args | |
| def _update_behavior_specs(self, output: UnityOutputProto) -> None: | |
| init_output = output.rl_initialization_output | |
| for brain_param in init_output.brain_parameters: | |
| # Each BrainParameter in the rl_initialization_output should have at least one AgentInfo | |
| # Get that agent, because we need some of its observations. | |
| agent_infos = output.rl_output.agentInfos[brain_param.brain_name] | |
| if agent_infos.value: | |
| agent = agent_infos.value[0] | |
| new_spec = behavior_spec_from_proto(brain_param, agent) | |
| self._env_specs[brain_param.brain_name] = new_spec | |
| logger.info(f"Connected new brain: {brain_param.brain_name}") | |
| def _update_state(self, output: UnityRLOutputProto) -> None: | |
| """ | |
| Collects experience information from all external brains in environment at current step. | |
| """ | |
| for brain_name in self._env_specs.keys(): | |
| if brain_name in output.agentInfos: | |
| agent_info_list = output.agentInfos[brain_name].value | |
| self._env_state[brain_name] = steps_from_proto( | |
| agent_info_list, self._env_specs[brain_name] | |
| ) | |
| else: | |
| self._env_state[brain_name] = ( | |
| DecisionSteps.empty(self._env_specs[brain_name]), | |
| TerminalSteps.empty(self._env_specs[brain_name]), | |
| ) | |
| self._side_channel_manager.process_side_channel_message(output.side_channel) | |
| def reset(self) -> None: | |
| if self._loaded: | |
| outputs = self._communicator.exchange( | |
| self._generate_reset_input(), self._poll_process | |
| ) | |
| if outputs is None: | |
| raise UnityCommunicatorStoppedException("Communicator has exited.") | |
| self._update_behavior_specs(outputs) | |
| rl_output = outputs.rl_output | |
| self._update_state(rl_output) | |
| self._is_first_message = False | |
| self._env_actions.clear() | |
| else: | |
| raise UnityEnvironmentException("No Unity environment is loaded.") | |
| def step(self) -> None: | |
| if self._is_first_message: | |
| return self.reset() | |
| if not self._loaded: | |
| raise UnityEnvironmentException("No Unity environment is loaded.") | |
| # fill the blanks for missing actions | |
| for group_name in self._env_specs: | |
| if group_name not in self._env_actions: | |
| n_agents = 0 | |
| if group_name in self._env_state: | |
| n_agents = len(self._env_state[group_name][0]) | |
| self._env_actions[group_name] = self._env_specs[ | |
| group_name | |
| ].action_spec.empty_action(n_agents) | |
| step_input = self._generate_step_input(self._env_actions) | |
| with hierarchical_timer("communicator.exchange"): | |
| outputs = self._communicator.exchange(step_input, self._poll_process) | |
| if outputs is None: | |
| raise UnityCommunicatorStoppedException("Communicator has exited.") | |
| self._update_behavior_specs(outputs) | |
| rl_output = outputs.rl_output | |
| self._update_state(rl_output) | |
| self._env_actions.clear() | |
| def behavior_specs(self) -> MappingType[str, BehaviorSpec]: | |
| return BehaviorMapping(self._env_specs) | |
| def _assert_behavior_exists(self, behavior_name: str) -> None: | |
| if behavior_name not in self._env_specs: | |
| raise UnityActionException( | |
| f"The group {behavior_name} does not correspond to an existing " | |
| f"agent group in the environment" | |
| ) | |
| def set_actions(self, behavior_name: BehaviorName, action: ActionTuple) -> None: | |
| self._assert_behavior_exists(behavior_name) | |
| if behavior_name not in self._env_state: | |
| return | |
| action_spec = self._env_specs[behavior_name].action_spec | |
| num_agents = len(self._env_state[behavior_name][0]) | |
| action = action_spec._validate_action(action, num_agents, behavior_name) | |
| self._env_actions[behavior_name] = action | |
| def set_action_for_agent( | |
| self, behavior_name: BehaviorName, agent_id: AgentId, action: ActionTuple | |
| ) -> None: | |
| self._assert_behavior_exists(behavior_name) | |
| if behavior_name not in self._env_state: | |
| return | |
| action_spec = self._env_specs[behavior_name].action_spec | |
| action = action_spec._validate_action(action, 1, behavior_name) | |
| if behavior_name not in self._env_actions: | |
| num_agents = len(self._env_state[behavior_name][0]) | |
| self._env_actions[behavior_name] = action_spec.empty_action(num_agents) | |
| try: | |
| index = np.where(self._env_state[behavior_name][0].agent_id == agent_id)[0][ | |
| 0 | |
| ] | |
| except IndexError as ie: | |
| raise IndexError( | |
| "agent_id {} is did not request a decision at the previous step".format( | |
| agent_id | |
| ) | |
| ) from ie | |
| if action_spec.continuous_size > 0: | |
| self._env_actions[behavior_name].continuous[index] = action.continuous[0, :] | |
| if action_spec.discrete_size > 0: | |
| self._env_actions[behavior_name].discrete[index] = action.discrete[0, :] | |
| def get_steps( | |
| self, behavior_name: BehaviorName | |
| ) -> Tuple[DecisionSteps, TerminalSteps]: | |
| self._assert_behavior_exists(behavior_name) | |
| return self._env_state[behavior_name] | |
| def _poll_process(self) -> None: | |
| """ | |
| Check the status of the subprocess. If it has exited, raise a UnityEnvironmentException | |
| :return: None | |
| """ | |
| if not self._process: | |
| return | |
| poll_res = self._process.poll() | |
| if poll_res is not None: | |
| exc_msg = self._returncode_to_env_message(self._process.returncode) | |
| raise UnityEnvironmentException(exc_msg) | |
| def close(self): | |
| """ | |
| Sends a shutdown signal to the unity environment, and closes the socket connection. | |
| """ | |
| if self._loaded: | |
| self._close() | |
| else: | |
| raise UnityEnvironmentException("No Unity environment is loaded.") | |
| def _close(self, timeout: Optional[int] = None) -> None: | |
| """ | |
| Close the communicator and environment subprocess (if necessary). | |
| :int timeout: [Optional] Number of seconds to wait for the environment to shut down before | |
| force-killing it. Defaults to `self.timeout_wait`. | |
| """ | |
| if timeout is None: | |
| timeout = self._timeout_wait | |
| self._loaded = False | |
| self._communicator.close() | |
| if self._process is not None: | |
| # Wait a bit for the process to shutdown, but kill it if it takes too long | |
| try: | |
| self._process.wait(timeout=timeout) | |
| logger.debug(self._returncode_to_env_message(self._process.returncode)) | |
| except subprocess.TimeoutExpired: | |
| logger.warning("Environment timed out shutting down. Killing...") | |
| self._process.kill() | |
| # Set to None so we don't try to close multiple times. | |
| self._process = None | |
| def _generate_step_input( | |
| self, vector_action: Dict[str, ActionTuple] | |
| ) -> UnityInputProto: | |
| rl_in = UnityRLInputProto() | |
| for b in vector_action: | |
| n_agents = len(self._env_state[b][0]) | |
| if n_agents == 0: | |
| continue | |
| for i in range(n_agents): | |
| action = AgentActionProto() | |
| if vector_action[b].continuous is not None: | |
| action.vector_actions_deprecated.extend( | |
| vector_action[b].continuous[i] | |
| ) | |
| action.continuous_actions.extend(vector_action[b].continuous[i]) | |
| if vector_action[b].discrete is not None: | |
| action.vector_actions_deprecated.extend( | |
| vector_action[b].discrete[i] | |
| ) | |
| action.discrete_actions.extend(vector_action[b].discrete[i]) | |
| rl_in.agent_actions[b].value.extend([action]) | |
| rl_in.command = STEP | |
| rl_in.side_channel = bytes( | |
| self._side_channel_manager.generate_side_channel_messages() | |
| ) | |
| return self._wrap_unity_input(rl_in) | |
| def _generate_reset_input(self) -> UnityInputProto: | |
| rl_in = UnityRLInputProto() | |
| rl_in.command = RESET | |
| rl_in.side_channel = bytes( | |
| self._side_channel_manager.generate_side_channel_messages() | |
| ) | |
| return self._wrap_unity_input(rl_in) | |
| def _send_academy_parameters( | |
| self, init_parameters: UnityRLInitializationInputProto | |
| ) -> UnityOutputProto: | |
| inputs = UnityInputProto() | |
| inputs.rl_initialization_input.CopyFrom(init_parameters) | |
| return self._communicator.initialize(inputs, self._poll_process) | |
| def _wrap_unity_input(rl_input: UnityRLInputProto) -> UnityInputProto: | |
| result = UnityInputProto() | |
| result.rl_input.CopyFrom(rl_input) | |
| return result | |
| def _returncode_to_signal_name(returncode: int) -> Optional[str]: | |
| """ | |
| Try to convert return codes into their corresponding signal name. | |
| E.g. returncode_to_signal_name(-2) -> "SIGINT" | |
| """ | |
| try: | |
| # A negative value -N indicates that the child was terminated by signal N (POSIX only). | |
| s = signal.Signals(-returncode) | |
| return s.name | |
| except Exception: | |
| # Should generally be a ValueError, but catch everything just in case. | |
| return None | |
| def _returncode_to_env_message(returncode: int) -> str: | |
| signal_name = UnityEnvironment._returncode_to_signal_name(returncode) | |
| signal_name = f" ({signal_name})" if signal_name else "" | |
| return f"Environment shut down with return code {returncode}{signal_name}." | |