Spaces:
Paused
Paused
| import pytest | |
| from mpmath import * | |
| def test_approximation(): | |
| mp.dps = 15 | |
| f = lambda x: cos(2-2*x)/x | |
| p, err = chebyfit(f, [2, 4], 8, error=True) | |
| assert err < 1e-5 | |
| for i in range(10): | |
| x = 2 + i/5. | |
| assert abs(polyval(p, x) - f(x)) < err | |
| def test_limits(): | |
| mp.dps = 15 | |
| assert limit(lambda x: (x-sin(x))/x**3, 0).ae(mpf(1)/6) | |
| assert limit(lambda n: (1+1/n)**n, inf).ae(e) | |
| def test_polyval(): | |
| assert polyval([], 3) == 0 | |
| assert polyval([0], 3) == 0 | |
| assert polyval([5], 3) == 5 | |
| # 4x^3 - 2x + 5 | |
| p = [4, 0, -2, 5] | |
| assert polyval(p,4) == 253 | |
| assert polyval(p,4,derivative=True) == (253, 190) | |
| def test_polyroots(): | |
| p = polyroots([1,-4]) | |
| assert p[0].ae(4) | |
| p, q = polyroots([1,2,3]) | |
| assert p.ae(-1 - sqrt(2)*j) | |
| assert q.ae(-1 + sqrt(2)*j) | |
| #this is not a real test, it only tests a specific case | |
| assert polyroots([1]) == [] | |
| pytest.raises(ValueError, lambda: polyroots([0])) | |
| def test_polyroots_legendre(): | |
| n = 64 | |
| coeffs = [11975573020964041433067793888190275875, 0, | |
| -190100434726484311252477736051902332000, 0, | |
| 1437919688271127330313741595496589239248, 0, | |
| -6897338342113537600691931230430793911840, 0, | |
| 23556405536185284408974715545252277554280, 0, | |
| -60969520211303089058522793175947071316960, 0, | |
| 124284021969194758465450309166353645376880, 0, | |
| -204721258548015217049921875719981284186016, 0, | |
| 277415422258095841688223780704620656114900, 0, | |
| -313237834141273382807123548182995095192800, 0, | |
| 297432255354328395601259515935229287637200, 0, | |
| -239057700565161140389797367947941296605600, 0, | |
| 163356095386193445933028201431093219347160, 0, | |
| -95158890516229191805647495979277603503200, 0, | |
| 47310254620162038075933656063247634556400, 0, | |
| -20071017111583894941305187420771723751200, 0, | |
| 7255051932731034189479516844750603752850, 0, | |
| -2228176940331017311443863996901733412640, 0, | |
| 579006552594977616773047095969088431600, 0, | |
| -126584428502545713788439446082310831200, 0, | |
| 23112325428835593809686977515028663000, 0, | |
| -3491517141958743235617737161547844000, 0, | |
| 431305058712550634988073414073557200, 0, | |
| -42927166660756742088912492757452000, 0, | |
| 3378527005707706553294038781836500, 0, | |
| -205277590220215081719131470288800, 0, | |
| 9330799555464321896324157740400, 0, | |
| -304114948474392713657972548576, 0, | |
| 6695289961520387531608984680, 0, | |
| -91048139350447232095702560, 0, | |
| 659769125727878493447120, 0, | |
| -1905929106580294155360, 0, | |
| 916312070471295267] | |
| with mp.workdps(3): | |
| with pytest.raises(mp.NoConvergence): | |
| polyroots(coeffs, maxsteps=5, cleanup=True, error=False, | |
| extraprec=n*10) | |
| roots = polyroots(coeffs, maxsteps=50, cleanup=True, error=False, | |
| extraprec=n*10) | |
| roots = [str(r) for r in roots] | |
| assert roots == \ | |
| ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961', | |
| '-0.946', '-0.93', '-0.911', '-0.889', '-0.866', '-0.841', | |
| '-0.813', '-0.784', '-0.753', '-0.72', '-0.685', '-0.649', | |
| '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402', | |
| '-0.357', '-0.311', '-0.265', '-0.217', '-0.17', '-0.121', | |
| '-0.073', '-0.0243', '0.0243', '0.073', '0.121', '0.17', '0.217', | |
| '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531', | |
| '0.572', '0.611', '0.649', '0.685', '0.72', '0.753', '0.784', | |
| '0.813', '0.841', '0.866', '0.889', '0.911', '0.93', '0.946', | |
| '0.961', '0.973', '0.983', '0.991', '0.996', '0.999'] | |
| def test_polyroots_legendre_init(): | |
| extra_prec = 100 | |
| coeffs = [11975573020964041433067793888190275875, 0, | |
| -190100434726484311252477736051902332000, 0, | |
| 1437919688271127330313741595496589239248, 0, | |
| -6897338342113537600691931230430793911840, 0, | |
| 23556405536185284408974715545252277554280, 0, | |
| -60969520211303089058522793175947071316960, 0, | |
| 124284021969194758465450309166353645376880, 0, | |
| -204721258548015217049921875719981284186016, 0, | |
| 277415422258095841688223780704620656114900, 0, | |
| -313237834141273382807123548182995095192800, 0, | |
| 297432255354328395601259515935229287637200, 0, | |
| -239057700565161140389797367947941296605600, 0, | |
| 163356095386193445933028201431093219347160, 0, | |
| -95158890516229191805647495979277603503200, 0, | |
| 47310254620162038075933656063247634556400, 0, | |
| -20071017111583894941305187420771723751200, 0, | |
| 7255051932731034189479516844750603752850, 0, | |
| -2228176940331017311443863996901733412640, 0, | |
| 579006552594977616773047095969088431600, 0, | |
| -126584428502545713788439446082310831200, 0, | |
| 23112325428835593809686977515028663000, 0, | |
| -3491517141958743235617737161547844000, 0, | |
| 431305058712550634988073414073557200, 0, | |
| -42927166660756742088912492757452000, 0, | |
| 3378527005707706553294038781836500, 0, | |
| -205277590220215081719131470288800, 0, | |
| 9330799555464321896324157740400, 0, | |
| -304114948474392713657972548576, 0, | |
| 6695289961520387531608984680, 0, | |
| -91048139350447232095702560, 0, | |
| 659769125727878493447120, 0, | |
| -1905929106580294155360, 0, | |
| 916312070471295267] | |
| roots_init = matrix(['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', | |
| '-0.961', '-0.946', '-0.93', '-0.911', '-0.889', | |
| '-0.866', '-0.841', '-0.813', '-0.784', '-0.753', | |
| '-0.72', '-0.685', '-0.649', '-0.611', '-0.572', | |
| '-0.531', '-0.489', '-0.446', '-0.402', '-0.357', | |
| '-0.311', '-0.265', '-0.217', '-0.17', '-0.121', | |
| '-0.073', '-0.0243', '0.0243', '0.073', '0.121', | |
| '0.17', '0.217', '0.265', ' 0.311', '0.357', | |
| '0.402', '0.446', '0.489', '0.531', '0.572', | |
| '0.611', '0.649', '0.685', '0.72', '0.753', | |
| '0.784', '0.813', '0.841', '0.866', '0.889', | |
| '0.911', '0.93', '0.946', '0.961', '0.973', | |
| '0.983', '0.991', '0.996', '0.999', '1.0']) | |
| with mp.workdps(2*mp.dps): | |
| roots_exact = polyroots(coeffs, maxsteps=50, cleanup=True, error=False, | |
| extraprec=2*extra_prec) | |
| with pytest.raises(mp.NoConvergence): | |
| polyroots(coeffs, maxsteps=5, cleanup=True, error=False, | |
| extraprec=extra_prec) | |
| roots,err = polyroots(coeffs, maxsteps=5, cleanup=True, error=True, | |
| extraprec=extra_prec,roots_init=roots_init) | |
| assert max(matrix(roots_exact)-matrix(roots).apply(abs)) < err | |
| roots1,err1 = polyroots(coeffs, maxsteps=25, cleanup=True, error=True, | |
| extraprec=extra_prec,roots_init=roots_init[:60]) | |
| assert max(matrix(roots_exact)-matrix(roots1).apply(abs)) < err1 | |
| def test_pade(): | |
| one = mpf(1) | |
| mp.dps = 20 | |
| N = 10 | |
| a = [one] | |
| k = 1 | |
| for i in range(1, N+1): | |
| k *= i | |
| a.append(one/k) | |
| p, q = pade(a, N//2, N//2) | |
| for x in arange(0, 1, 0.1): | |
| r = polyval(p[::-1], x)/polyval(q[::-1], x) | |
| assert(r.ae(exp(x), 1.0e-10)) | |
| mp.dps = 15 | |
| def test_fourier(): | |
| mp.dps = 15 | |
| c, s = fourier(lambda x: x+1, [-1, 2], 2) | |
| #plot([lambda x: x+1, lambda x: fourierval((c, s), [-1, 2], x)], [-1, 2]) | |
| assert c[0].ae(1.5) | |
| assert c[1].ae(-3*sqrt(3)/(2*pi)) | |
| assert c[2].ae(3*sqrt(3)/(4*pi)) | |
| assert s[0] == 0 | |
| assert s[1].ae(3/(2*pi)) | |
| assert s[2].ae(3/(4*pi)) | |
| assert fourierval((c, s), [-1, 2], 1).ae(1.9134966715663442) | |
| def test_differint(): | |
| mp.dps = 15 | |
| assert differint(lambda t: t, 2, -0.5).ae(8*sqrt(2/pi)/3) | |
| def test_invlap(): | |
| mp.dps = 15 | |
| t = 0.01 | |
| fp = lambda p: 1/(p+1)**2 | |
| ft = lambda t: t*exp(-t) | |
| ftt = ft(t) | |
| assert invertlaplace(fp,t,method='talbot').ae(ftt) | |
| assert invertlaplace(fp,t,method='stehfest').ae(ftt) | |
| assert invertlaplace(fp,t,method='dehoog').ae(ftt) | |
| assert invertlaplace(fp,t,method='cohen').ae(ftt) | |
| t = 1.0 | |
| ftt = ft(t) | |
| assert invertlaplace(fp,t,method='talbot').ae(ftt) | |
| assert invertlaplace(fp,t,method='stehfest').ae(ftt) | |
| assert invertlaplace(fp,t,method='dehoog').ae(ftt) | |
| assert invertlaplace(fp,t,method='cohen').ae(ftt) | |
| t = 0.01 | |
| fp = lambda p: log(p)/p | |
| ft = lambda t: -euler-log(t) | |
| ftt = ft(t) | |
| assert invertlaplace(fp,t,method='talbot').ae(ftt) | |
| assert invertlaplace(fp,t,method='stehfest').ae(ftt) | |
| assert invertlaplace(fp,t,method='dehoog').ae(ftt) | |
| assert invertlaplace(fp,t,method='cohen').ae(ftt) | |
| t = 1.0 | |
| ftt = ft(t) | |
| assert invertlaplace(fp,t,method='talbot').ae(ftt) | |
| assert invertlaplace(fp,t,method='stehfest').ae(ftt) | |
| assert invertlaplace(fp,t,method='dehoog').ae(ftt) | |
| assert invertlaplace(fp,t,method='cohen').ae(ftt) | |