Spaces:
Paused
Paused
| import pytest | |
| np = pytest.importorskip("numpy") | |
| pytest.importorskip("scipy") | |
| import networkx as nx | |
| from networkx.generators.degree_seq import havel_hakimi_graph | |
| class TestModularity: | |
| def setup_class(cls): | |
| deg = [3, 2, 2, 1, 0] | |
| cls.G = havel_hakimi_graph(deg) | |
| # Graph used as an example in Sec. 4.1 of Langville and Meyer, | |
| # "Google's PageRank and Beyond". (Used for test_directed_laplacian) | |
| cls.DG = nx.DiGraph() | |
| cls.DG.add_edges_from( | |
| ( | |
| (1, 2), | |
| (1, 3), | |
| (3, 1), | |
| (3, 2), | |
| (3, 5), | |
| (4, 5), | |
| (4, 6), | |
| (5, 4), | |
| (5, 6), | |
| (6, 4), | |
| ) | |
| ) | |
| def test_modularity(self): | |
| "Modularity matrix" | |
| # fmt: off | |
| B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.], | |
| [0.25, -0.5, 0.5, -0.25, 0.], | |
| [0.25, 0.5, -0.5, -0.25, 0.], | |
| [0.625, -0.25, -0.25, -0.125, 0.], | |
| [0., 0., 0., 0., 0.]]) | |
| # fmt: on | |
| permutation = [4, 0, 1, 2, 3] | |
| np.testing.assert_equal(nx.modularity_matrix(self.G), B) | |
| np.testing.assert_equal( | |
| nx.modularity_matrix(self.G, nodelist=permutation), | |
| B[np.ix_(permutation, permutation)], | |
| ) | |
| def test_modularity_weight(self): | |
| "Modularity matrix with weights" | |
| # fmt: off | |
| B = np.array([[-1.125, 0.25, 0.25, 0.625, 0.], | |
| [0.25, -0.5, 0.5, -0.25, 0.], | |
| [0.25, 0.5, -0.5, -0.25, 0.], | |
| [0.625, -0.25, -0.25, -0.125, 0.], | |
| [0., 0., 0., 0., 0.]]) | |
| # fmt: on | |
| G_weighted = self.G.copy() | |
| for n1, n2 in G_weighted.edges(): | |
| G_weighted.edges[n1, n2]["weight"] = 0.5 | |
| # The following test would fail in networkx 1.1 | |
| np.testing.assert_equal(nx.modularity_matrix(G_weighted), B) | |
| # The following test that the modularity matrix get rescaled accordingly | |
| np.testing.assert_equal( | |
| nx.modularity_matrix(G_weighted, weight="weight"), 0.5 * B | |
| ) | |
| def test_directed_modularity(self): | |
| "Directed Modularity matrix" | |
| # fmt: off | |
| B = np.array([[-0.2, 0.6, 0.8, -0.4, -0.4, -0.4], | |
| [0., 0., 0., 0., 0., 0.], | |
| [0.7, 0.4, -0.3, -0.6, 0.4, -0.6], | |
| [-0.2, -0.4, -0.2, -0.4, 0.6, 0.6], | |
| [-0.2, -0.4, -0.2, 0.6, -0.4, 0.6], | |
| [-0.1, -0.2, -0.1, 0.8, -0.2, -0.2]]) | |
| # fmt: on | |
| node_permutation = [5, 1, 2, 3, 4, 6] | |
| idx_permutation = [4, 0, 1, 2, 3, 5] | |
| mm = nx.directed_modularity_matrix(self.DG, nodelist=sorted(self.DG)) | |
| np.testing.assert_equal(mm, B) | |
| np.testing.assert_equal( | |
| nx.directed_modularity_matrix(self.DG, nodelist=node_permutation), | |
| B[np.ix_(idx_permutation, idx_permutation)], | |
| ) | |