File size: 2,006 Bytes
87daab4 22d26a9 f3ffe2b 87daab4 1f1a2d1 87daab4 22d26a9 87daab4 f3ffe2b 1f1a2d1 f3ffe2b 87daab4 22d26a9 ca45251 22d26a9 fdf4060 22d26a9 fdf4060 01eca0c 7b97ddf 87daab4 551db13 22d26a9 8d71bb6 22d26a9 551db13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import matplotlib.pyplot as plt
import io
import numpy as np
from PIL import Image
import requests
import json
import re
# 执行 Python 代码并生成图像
def execute_code(code):
namespace = {}
exec(code, namespace)
fig = namespace.get('fig') # Assume the code generates a matplotlib figure named 'fig'
if fig:
img = get_image_data(fig)
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
img_b64 = base64.b64encode(img_byte_arr).decode('utf-8')
return img_b64
else:
raise ValueError("The code did not generate a matplotlib figure named 'fig'")
def gpt_inference(base_url, model, openai_key, prompt):
newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel. The code should create a matplotlib figure and assign it to a variable named "fig". The "fig" variable will be used for further processing.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.'
data = {
"model": model,
"messages": [
{
"role": "user",
"content": newprompt
}
],
"temperature": 0.7,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_key}",
}
response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data))
code = response.json()["choices"][0]["message"]["content"]
print(f"code:{code}")
img = execute_code(code)
return img
iface = gr.Interface(
fn=gpt_inference,
inputs=["text", gr.inputs.Dropdown(choices=["gpt3.5-turbo", "gpt4"], label="Model"), "text", "text"],
outputs=gr.Image(),
input_labels=["Base URL", "Model", "OpenAI Key","Prompt"]
)
iface.launch() |