File size: 2,006 Bytes
87daab4
 
 
 
 
22d26a9
 
f3ffe2b
87daab4
1f1a2d1
87daab4
22d26a9
87daab4
f3ffe2b
 
 
 
1f1a2d1
 
 
 
 
 
 
 
f3ffe2b
 
87daab4
22d26a9
 
ca45251
22d26a9
 
 
 
 
 
 
 
fdf4060
 
 
 
 
 
 
22d26a9
 
 
fdf4060
01eca0c
7b97ddf
87daab4
 
 
551db13
 
22d26a9
8d71bb6
22d26a9
551db13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import matplotlib.pyplot as plt
import io
import numpy as np
from PIL import Image
import requests
import json
import re



# 执行 Python 代码并生成图像
def execute_code(code):
    namespace = {}
    exec(code, namespace)
    fig = namespace.get('fig')  # Assume the code generates a matplotlib figure named 'fig'
    if fig:
        img = get_image_data(fig)
        
        img_byte_arr = io.BytesIO()
        img.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        img_b64 = base64.b64encode(img_byte_arr).decode('utf-8')
        
        return img_b64
    else:
        raise ValueError("The code did not generate a matplotlib figure named 'fig'")

def gpt_inference(base_url, model, openai_key, prompt):
    
    newprompt = f'Write Python code that does the following: \n\n{prompt}\n\nNote, the code is going to be executed in a Jupyter Python kernel. The code should create a matplotlib figure and assign it to a variable named "fig". The "fig" variable will be used for further processing.\n\nLast instruction, and this is the most important, just return code. No other outputs, as your full response will directly be executed in the kernel.'

    data = {
      "model": model,
      "messages": [
        {
          "role": "user",
          "content": newprompt
        }
      ],
      "temperature": 0.7,
    }

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_key}",
    }

    response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, data=json.dumps(data))
    
    code = response.json()["choices"][0]["message"]["content"]
    print(f"code:{code}")
    img = execute_code(code)
    return img

iface = gr.Interface(
    fn=gpt_inference, 
    inputs=["text", gr.inputs.Dropdown(choices=["gpt3.5-turbo", "gpt4"], label="Model"), "text", "text"], 
    outputs=gr.Image(),
    input_labels=["Base URL", "Model", "OpenAI Key","Prompt"]
)
iface.launch()