File size: 7,525 Bytes
2c4ccb6
 
 
 
 
 
 
a9e55b8
2c4ccb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c39633
 
 
422431d
 
a7005fc
 
0068013
4c39633
 
2c4ccb6
 
4c39633
2c4ccb6
 
 
 
 
 
 
 
0d7e65e
 
 
 
 
 
422431d
0d7e65e
 
 
 
 
 
2c4ccb6
 
dc023a7
0068013
 
 
dc023a7
 
0068013
 
 
 
dc023a7
 
 
 
 
 
 
a9e55b8
 
 
 
 
 
dc023a7
0068013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc023a7
0068013
 
 
 
 
 
 
 
 
 
 
dc023a7
0068013
 
 
 
 
 
 
 
 
 
dc023a7
 
 
 
 
 
0068013
 
dc023a7
0068013
dc023a7
0068013
dc023a7
 
 
2c4ccb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0068013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from typing import List, Optional
import numpy as np
import io
import os
import gc
from dotenv import load_dotenv
from pydub import AudioSegment
from utils import (
    authenticate,
    split_documents,
    build_vectorstore,
    retrieve_context,
    retrieve_context_approx,
    build_prompt,
    ask_gemini,
    load_documents_gradio,
    transcribe
)

load_dotenv()

app = FastAPI()

# Define the specific origins that are allowed to make requests to your API
origins = [
    "http://localhost:3000",  # For local development
    "https://chat-docx-ai-vercel.vercel.app",
    "https://huggingface.co",  # Hugging Face Spaces domain
    "https://codegeass321-chatdocxai.hf.space",  # Old HF space
    "https://codegeass321-backendserver.hf.space",  # New HF space
    "*",  # Allow requests from the proxy (same origin)
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

client = authenticate()
store = {"value": None}


@app.options("/upload")
async def options_upload():
    return JSONResponse(
        content={"status": "ok"},
        headers={
            "Access-Control-Allow-Origin": "*",
            "Access-Control-Allow-Methods": "POST, OPTIONS",
            "Access-Control-Allow-Headers": "Content-Type, Authorization",
        },
    )


@app.post("/upload")
async def upload(files: List[UploadFile] = File(...)):
    headers = {
        "Access-Control-Allow-Origin": "*",
        "Access-Control-Allow-Methods": "POST, OPTIONS",
        "Access-Control-Allow-Headers": "Content-Type, Authorization",
    }
    try:
        print(f"Upload request received with {len(files)} files")
        for i, file in enumerate(files):
            print(f"File {i+1}: {file.filename}, content_type: {file.content_type}")
        
        if not files:
            return JSONResponse(
                content={"status": "error", "message": "No files uploaded."},
                status_code=400,
                headers=headers
            )
        
        # Explicitly clear memory before processing new files
        print("Clearing previous vector store from memory...")
        store["value"] = None
        gc.collect()
        print("Memory cleared.")

        print("Starting document processing...")
        try:
            raw_docs = load_documents_gradio(files)
            print(f"Documents loaded: {len(raw_docs)} documents")
        except Exception as doc_error:
            print(f"Error loading documents: {doc_error}")
            return JSONResponse(
                content={"status": "error", "message": f"Error loading documents: {str(doc_error)}"},
                status_code=500,
                headers=headers
            )
            
        if not raw_docs:
            return JSONResponse(
                content={"status": "error", "message": "No content could be extracted from the uploaded files."},
                status_code=400,
                headers=headers
            )
            
        print("Documents loaded. Splitting documents...")
        try:
            chunks = split_documents(raw_docs)
            print(f"Documents split into {len(chunks)} chunks")
        except Exception as split_error:
            print(f"Error splitting documents: {split_error}")
            return JSONResponse(
                content={"status": "error", "message": f"Error splitting documents: {str(split_error)}"},
                status_code=500,
                headers=headers
            )
            
        print("Documents split. Building vector store...")
        try:
            store["value"] = build_vectorstore(chunks)
            print("Vector store built successfully.")
        except Exception as vector_error:
            print(f"Error building vector store: {vector_error}")
            return JSONResponse(
                content={"status": "error", "message": f"Error building vector store: {str(vector_error)}"},
                status_code=500,
                headers=headers
            )
        
        return JSONResponse(
            content={"status": "success", "message": "Document processed successfully! You can now ask questions."},
            headers=headers
        )
    except Exception as e:
        import traceback
        error_trace = traceback.format_exc()
        print(f"An error occurred during upload: {e}")
        print(f"Traceback: {error_trace}")
        return JSONResponse(
            content={"status": "error", "message": f"An internal server error occurred: {str(e)}"},
            status_code=500,
            headers=headers
        )

@app.post("/ask")
async def ask(
    text: Optional[str] = Form(None),
    audio: Optional[UploadFile] = File(None)
):
    transcribed = None
    if store["value"] is None:
        return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400)
    if text and text.strip():
        query = text.strip()
    elif audio is not None:
        audio_bytes = await audio.read()
        try:
            audio_io = io.BytesIO(audio_bytes)
            audio_seg = AudioSegment.from_file(audio_io)
            y = np.array(audio_seg.get_array_of_samples()).astype(np.float32)
            if audio_seg.channels == 2:
                y = y.reshape((-1, 2)).mean(axis=1)  # Convert to mono
            y /= np.max(np.abs(y))  # Normalize to [-1, 1]
            sr = audio_seg.frame_rate
            transcribed = transcribe((sr, y))
            query = transcribed
        except FileNotFoundError as e:
            return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400)
        except Exception as e:
            return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400)
    else:
        return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400)
    if store["value"]["chunks"] <= 50:
        top_chunks = retrieve_context(query, store["value"])
    else:
        top_chunks = retrieve_context_approx(query, store["value"])
    prompt = build_prompt(top_chunks, query)
    answer = ask_gemini(prompt, client)
    return {"status": "success", "answer": answer.strip(), "transcribed": transcribed}

@app.get("/status")
async def status():
    """Simple endpoint to check if the server is running."""
    import platform
    import sys
    import psutil
    
    # Get memory info
    process = psutil.Process(os.getpid())
    memory_info = process.memory_info()
    
    return {
        "status": "ok",
        "message": "Server is running",
        "google_api_key_set": bool(os.environ.get("GOOGLE_API_KEY")),
        "vectorstore_loaded": store.get("value") is not None,
        "system_info": {
            "platform": platform.platform(),
            "python_version": sys.version,
            "memory_usage_mb": memory_info.rss / (1024 * 1024),
            "cpu_percent": process.cpu_percent(),
            "available_memory_mb": psutil.virtual_memory().available / (1024 * 1024)
        },
        "env_vars": {
            "PORT": os.environ.get("PORT"),
            "SPACE_ID": os.environ.get("SPACE_ID"),
            "SYSTEM": os.environ.get("SYSTEM")
        }
    }