Spaces:
Running
Running
File size: 10,063 Bytes
2c4ccb6 a9e55b8 2c4ccb6 7036bcd 2c4ccb6 4c39633 422431d a7005fc 8bf7eee 0068013 4c39633 2c4ccb6 4c39633 2c4ccb6 0d7e65e 7036bcd 0d7e65e 422431d 0d7e65e 2c4ccb6 dc023a7 0068013 dc023a7 7036bcd 0068013 7036bcd 0068013 dc023a7 a9e55b8 7036bcd 455095d a9e55b8 455095d a9e55b8 455095d 7036bcd a9e55b8 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 0068013 dc023a7 0068013 7036bcd dc023a7 0068013 dc023a7 2c4ccb6 7036bcd 2c4ccb6 7036bcd 2c4ccb6 7036bcd 2c4ccb6 7036bcd 2c4ccb6 7036bcd 2c4ccb6 7036bcd 2c4ccb6 0068013 7036bcd 0068013 7036bcd 0068013 7036bcd 455095d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from typing import List, Optional
import numpy as np
import io
import os
import gc
from dotenv import load_dotenv
from pydub import AudioSegment
from utils import (
authenticate,
split_documents,
build_vectorstore,
retrieve_context,
retrieve_context_approx,
build_prompt,
ask_gemini,
load_documents_gradio,
transcribe
)
load_dotenv()
# Configure logging
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
app = FastAPI()
# Define the specific origins that are allowed to make requests to your API
origins = [
"http://localhost:3000", # For local development
"https://chat-docx-ai-vercel.vercel.app",
"https://huggingface.co", # Hugging Face Spaces domain
"https://codegeass321-chatdocxai.hf.space", # Old HF space
"https://codegeass321-backendserver.hf.space", # New HF space main UI
"https://codegeass321-backendserver-8000.hf.space", # New HF space API endpoint
"*", # Allow requests from the proxy (same origin)
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
client = authenticate()
store = {"value": None}
@app.get("/")
async def root():
"""Root endpoint that redirects to status."""
logger.info("Root endpoint called")
return {
"message": "API is running. Use /status, /upload, or /ask endpoints."
}
@app.options("/upload")
async def options_upload():
return JSONResponse(
content={"status": "ok"},
headers={
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
},
)
@app.post("/upload")
async def upload(files: List[UploadFile] = File(...)):
headers = {
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
}
try:
logger.info(f"Upload request received with {len(files)} files")
for i, file in enumerate(files):
logger.info(f"File {i+1}: {file.filename}, content_type: {file.content_type}")
if not files:
return JSONResponse(
content={"status": "error", "message": "No files uploaded."},
status_code=400,
headers=headers
)
# Explicitly clear memory before processing new files
logger.info("Clearing previous vector store from memory...")
old_store_had_value = store.get("value") is not None
store["value"] = None
# Force garbage collection
gc.collect()
# More aggressive memory cleanup if needed
if old_store_had_value:
try:
if hasattr(gc, 'collect'):
for i in range(3): # Run multiple collection cycles
gc.collect(i)
except Exception as e:
logger.warning(f"Error during aggressive garbage collection: {e}")
logger.info("Memory cleared.")
logger.info("Starting document processing...")
try:
raw_docs = load_documents_gradio(files)
logger.info(f"Documents loaded: {len(raw_docs)} documents")
except Exception as doc_error:
logger.error(f"Error loading documents: {doc_error}")
return JSONResponse(
content={"status": "error", "message": f"Error loading documents: {str(doc_error)}"},
status_code=500,
headers=headers
)
if not raw_docs:
return JSONResponse(
content={"status": "error", "message": "No content could be extracted from the uploaded files."},
status_code=400,
headers=headers
)
logger.info("Documents loaded. Splitting documents...")
try:
chunks = split_documents(raw_docs)
logger.info(f"Documents split into {len(chunks)} chunks")
except Exception as split_error:
logger.error(f"Error splitting documents: {split_error}")
return JSONResponse(
content={"status": "error", "message": f"Error splitting documents: {str(split_error)}"},
status_code=500,
headers=headers
)
logger.info("Documents split. Building vector store...")
try:
store["value"] = build_vectorstore(chunks)
logger.info("Vector store built successfully.")
except Exception as vector_error:
logger.error(f"Error building vector store: {vector_error}")
return JSONResponse(
content={"status": "error", "message": f"Error building vector store: {str(vector_error)}"},
status_code=500,
headers=headers
)
return JSONResponse(
content={"status": "success", "message": "Document processed successfully! You can now ask questions."},
headers=headers
)
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"An error occurred during upload: {e}")
logger.error(f"Traceback: {error_trace}")
return JSONResponse(
content={"status": "error", "message": f"An internal server error occurred: {str(e)}"},
status_code=500,
headers=headers
)
@app.post("/ask")
async def ask(
text: Optional[str] = Form(None),
audio: Optional[UploadFile] = File(None)
):
logger.info(f"Ask endpoint called: text={bool(text)}, audio={bool(audio)}")
transcribed = None
if store["value"] is None:
logger.warning("Ask called but no document is loaded")
return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400)
if text and text.strip():
query = text.strip()
elif audio is not None:
audio_bytes = await audio.read()
try:
audio_io = io.BytesIO(audio_bytes)
audio_seg = AudioSegment.from_file(audio_io)
y = np.array(audio_seg.get_array_of_samples()).astype(np.float32)
if audio_seg.channels == 2:
y = y.reshape((-1, 2)).mean(axis=1) # Convert to mono
y /= np.max(np.abs(y)) # Normalize to [-1, 1]
sr = audio_seg.frame_rate
transcribed = transcribe((sr, y))
query = transcribed
except FileNotFoundError as e:
return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400)
except Exception as e:
return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400)
else:
logger.warning("Ask called with no text or audio")
return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400)
logger.info(f"Processing query: {query[:100]}...")
if store["value"]["chunks"] <= 50:
top_chunks = retrieve_context(query, store["value"])
else:
top_chunks = retrieve_context_approx(query, store["value"])
prompt = build_prompt(top_chunks, query)
answer = ask_gemini(prompt, client)
logger.info(f"Generated answer: {answer[:100]}...")
return {"status": "success", "answer": answer.strip(), "transcribed": transcribed}
@app.get("/status")
async def status():
"""Simple endpoint to check if the server is running."""
import platform
import sys
import psutil
logger.info("Status endpoint called")
# Get memory info
process = psutil.Process(os.getpid())
memory_info = process.memory_info()
status_info = {
"status": "ok",
"message": "Server is running",
"google_api_key_set": bool(os.environ.get("GOOGLE_API_KEY")),
"vectorstore_loaded": store.get("value") is not None,
"system_info": {
"platform": platform.platform(),
"python_version": sys.version,
"memory_usage_mb": memory_info.rss / (1024 * 1024),
"cpu_percent": process.cpu_percent(),
"available_memory_mb": psutil.virtual_memory().available / (1024 * 1024)
},
"env_vars": {
"PORT": os.environ.get("PORT"),
"SPACE_ID": os.environ.get("SPACE_ID"),
"SYSTEM": os.environ.get("SYSTEM")
}
}
logger.info(f"Status response: {status_info}")
return status_info
@app.post("/clear")
async def clear_context():
"""Clear the current document context and free up memory."""
global store
logger.info("Clearing document context...")
# Clear the store
if store.get("value") is not None:
store["value"] = None
# Force garbage collection
gc.collect()
# Run a more aggressive memory cleanup
try:
if hasattr(gc, 'collect'):
for i in range(3): # Run multiple collection cycles
gc.collect(i)
except Exception as e:
logger.warning(f"Error during aggressive garbage collection: {e}")
logger.info("Document context cleared successfully.")
return {"status": "success", "message": "Document context cleared successfully."}
else:
logger.info("No document context to clear.")
return {"status": "info", "message": "No document context was loaded."}
|