Spaces:
Running
Running
File size: 4,471 Bytes
2c4ccb6 a9e55b8 2c4ccb6 4c39633 2c4ccb6 4c39633 2c4ccb6 0d7e65e dc023a7 0d7e65e 2c4ccb6 dc023a7 a9e55b8 dc023a7 2c4ccb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from typing import List, Optional
import numpy as np
import io
import os
import gc
from dotenv import load_dotenv
from pydub import AudioSegment
from utils import (
authenticate,
split_documents,
build_vectorstore,
retrieve_context,
retrieve_context_approx,
build_prompt,
ask_gemini,
load_documents_gradio,
transcribe
)
load_dotenv()
app = FastAPI()
# Define the specific origins that are allowed to make requests to your API
origins = [
"http://localhost:3000", # For local development
"https://chat-docx-ai-vercel.vercel.app",
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
client = authenticate()
store = {"value": None}
@app.options("/upload")
async def options_upload():
return JSONResponse(
content={"status": "ok"},
headers={
"Access-Control-Allow-Origin": "https://chat-docx-ai-vercel.app",
"Access-Control-Allow-Methods": "POST, OPTIONS",
"Access-Control-Allow-Headers": "Content-Type, Authorization",
},
)
@app.post("/upload")
async def upload(files: List[UploadFile] = File(...)):
headers = {
"Access-Control-Allow-Origin": "https://chat-docx-ai-vercel.app"
}
try:
if not files:
return JSONResponse(
content={"status": "error", "message": "No files uploaded."},
status_code=400,
headers=headers
)
# Explicitly clear memory before processing new files
print("Clearing previous vector store from memory...")
store["value"] = None
gc.collect()
print("Memory cleared.")
print("Starting document processing...")
raw_docs = load_documents_gradio(files)
print("Documents loaded. Splitting documents...")
chunks = split_documents(raw_docs)
print("Documents split. Building vector store...")
store["value"] = build_vectorstore(chunks)
print("Vector store built successfully.")
return JSONResponse(
content={"status": "success", "message": "Document processed successfully! You can now ask questions."},
headers=headers
)
except Exception as e:
print(f"An error occurred during upload: {e}")
return JSONResponse(
content={"status": "error", "message": f"An internal server error occurred: {e}"},
status_code=500,
headers=headers
)
@app.post("/ask")
async def ask(
text: Optional[str] = Form(None),
audio: Optional[UploadFile] = File(None)
):
transcribed = None
if store["value"] is None:
return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400)
if text and text.strip():
query = text.strip()
elif audio is not None:
audio_bytes = await audio.read()
try:
audio_io = io.BytesIO(audio_bytes)
audio_seg = AudioSegment.from_file(audio_io)
y = np.array(audio_seg.get_array_of_samples()).astype(np.float32)
if audio_seg.channels == 2:
y = y.reshape((-1, 2)).mean(axis=1) # Convert to mono
y /= np.max(np.abs(y)) # Normalize to [-1, 1]
sr = audio_seg.frame_rate
transcribed = transcribe((sr, y))
query = transcribed
except FileNotFoundError as e:
return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400)
except Exception as e:
return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400)
else:
return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400)
if store["value"]["chunks"] <= 50:
top_chunks = retrieve_context(query, store["value"])
else:
top_chunks = retrieve_context_approx(query, store["value"])
prompt = build_prompt(top_chunks, query)
answer = ask_gemini(prompt, client)
return {"status": "success", "answer": answer.strip(), "transcribed": transcribed}
|