from fastapi import FastAPI, File, UploadFile, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from typing import List, Optional import numpy as np import io import os from dotenv import load_dotenv from pydub import AudioSegment from utils import ( authenticate, split_documents, build_vectorstore, retrieve_context, retrieve_context_approx, build_prompt, ask_gemini, load_documents_gradio, transcribe ) load_dotenv() app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) client = authenticate() store = {"value": None} @app.post("/upload") async def upload(files: List[UploadFile] = File(...)): if not files: return JSONResponse({"status": "error", "message": "No files uploaded."}, status_code=400) raw_docs = load_documents_gradio(files) chunks = split_documents(raw_docs) store["value"] = build_vectorstore(chunks) return {"status": "success", "message": "Document processed successfully! You can now ask questions."} @app.post("/ask") async def ask( text: Optional[str] = Form(None), audio: Optional[UploadFile] = File(None) ): transcribed = None if store["value"] is None: return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400) if text and text.strip(): query = text.strip() elif audio is not None: audio_bytes = await audio.read() try: audio_io = io.BytesIO(audio_bytes) audio_seg = AudioSegment.from_file(audio_io) y = np.array(audio_seg.get_array_of_samples()).astype(np.float32) if audio_seg.channels == 2: y = y.reshape((-1, 2)).mean(axis=1) # Convert to mono y /= np.max(np.abs(y)) # Normalize to [-1, 1] sr = audio_seg.frame_rate transcribed = transcribe((sr, y)) query = transcribed except FileNotFoundError as e: return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400) except Exception as e: return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400) else: return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400) if store["value"]["chunks"] <= 50: top_chunks = retrieve_context(query, store["value"]) else: top_chunks = retrieve_context_approx(query, store["value"]) prompt = build_prompt(top_chunks, query) answer = ask_gemini(prompt, client) return {"status": "success", "answer": answer.strip(), "transcribed": transcribed}