from fastapi import FastAPI, File, UploadFile, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from typing import List, Optional import numpy as np import io import os import gc from dotenv import load_dotenv from pydub import AudioSegment from utils import ( authenticate, split_documents, build_vectorstore, retrieve_context, retrieve_context_approx, build_prompt, ask_gemini, load_documents_gradio, transcribe ) load_dotenv() # Configure logging import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) app = FastAPI() # Define the specific origins that are allowed to make requests to your API origins = [ "http://localhost:3000", # For local development "https://chat-docx-ai-vercel.vercel.app", "https://huggingface.co", # Hugging Face Spaces domain "https://codegeass321-chatdocxai.hf.space", # Old HF space "https://codegeass321-backendserver.hf.space", # New HF space main UI "https://codegeass321-backendserver-8000.hf.space", # New HF space API endpoint "*", # Allow requests from the proxy (same origin) ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) client = authenticate() store = {"value": None} @app.get("/") async def root(): """Root endpoint that redirects to status.""" logger.info("Root endpoint called") return { "message": "API is running. Use /status, /upload, or /ask endpoints." } @app.options("/upload") async def options_upload(): return JSONResponse( content={"status": "ok"}, headers={ "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Methods": "POST, OPTIONS", "Access-Control-Allow-Headers": "Content-Type, Authorization", }, ) @app.post("/upload") async def upload(files: List[UploadFile] = File(...)): headers = { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Methods": "POST, OPTIONS", "Access-Control-Allow-Headers": "Content-Type, Authorization", } try: logger.info(f"Upload request received with {len(files)} files") for i, file in enumerate(files): logger.info(f"File {i+1}: {file.filename}, content_type: {file.content_type}") if not files: return JSONResponse( content={"status": "error", "message": "No files uploaded."}, status_code=400, headers=headers ) # Explicitly clear memory before processing new files logger.info("Clearing previous vector store from memory...") old_store_had_value = store.get("value") is not None store["value"] = None # Force garbage collection gc.collect() # More aggressive memory cleanup if needed if old_store_had_value: try: if hasattr(gc, 'collect'): for i in range(3): # Run multiple collection cycles gc.collect(i) except Exception as e: logger.warning(f"Error during aggressive garbage collection: {e}") logger.info("Memory cleared.") logger.info("Starting document processing...") try: raw_docs = load_documents_gradio(files) logger.info(f"Documents loaded: {len(raw_docs)} documents") except Exception as doc_error: logger.error(f"Error loading documents: {doc_error}") return JSONResponse( content={"status": "error", "message": f"Error loading documents: {str(doc_error)}"}, status_code=500, headers=headers ) if not raw_docs: return JSONResponse( content={"status": "error", "message": "No content could be extracted from the uploaded files."}, status_code=400, headers=headers ) logger.info("Documents loaded. Splitting documents...") try: chunks = split_documents(raw_docs) logger.info(f"Documents split into {len(chunks)} chunks") except Exception as split_error: logger.error(f"Error splitting documents: {split_error}") return JSONResponse( content={"status": "error", "message": f"Error splitting documents: {str(split_error)}"}, status_code=500, headers=headers ) logger.info("Documents split. Building vector store...") try: store["value"] = build_vectorstore(chunks) logger.info("Vector store built successfully.") except Exception as vector_error: logger.error(f"Error building vector store: {vector_error}") return JSONResponse( content={"status": "error", "message": f"Error building vector store: {str(vector_error)}"}, status_code=500, headers=headers ) return JSONResponse( content={"status": "success", "message": "Document processed successfully! You can now ask questions."}, headers=headers ) except Exception as e: import traceback error_trace = traceback.format_exc() logger.error(f"An error occurred during upload: {e}") logger.error(f"Traceback: {error_trace}") return JSONResponse( content={"status": "error", "message": f"An internal server error occurred: {str(e)}"}, status_code=500, headers=headers ) @app.post("/ask") async def ask( text: Optional[str] = Form(None), audio: Optional[UploadFile] = File(None) ): logger.info(f"Ask endpoint called: text={bool(text)}, audio={bool(audio)}") transcribed = None if store["value"] is None: logger.warning("Ask called but no document is loaded") return JSONResponse({"status": "error", "message": "Please upload and process a document first."}, status_code=400) if text and text.strip(): query = text.strip() elif audio is not None: audio_bytes = await audio.read() try: audio_io = io.BytesIO(audio_bytes) audio_seg = AudioSegment.from_file(audio_io) y = np.array(audio_seg.get_array_of_samples()).astype(np.float32) if audio_seg.channels == 2: y = y.reshape((-1, 2)).mean(axis=1) # Convert to mono y /= np.max(np.abs(y)) # Normalize to [-1, 1] sr = audio_seg.frame_rate transcribed = transcribe((sr, y)) query = transcribed except FileNotFoundError as e: return JSONResponse({"status": "error", "message": "Audio decode failed: ffmpeg is not installed or not in PATH. Please install ffmpeg."}, status_code=400) except Exception as e: return JSONResponse({"status": "error", "message": f"Audio decode failed: {str(e)}"}, status_code=400) else: logger.warning("Ask called with no text or audio") return JSONResponse({"status": "error", "message": "Please provide a question by typing or speaking."}, status_code=400) logger.info(f"Processing query: {query[:100]}...") if store["value"]["chunks"] <= 50: top_chunks = retrieve_context(query, store["value"]) else: top_chunks = retrieve_context_approx(query, store["value"]) prompt = build_prompt(top_chunks, query) answer = ask_gemini(prompt, client) logger.info(f"Generated answer: {answer[:100]}...") return {"status": "success", "answer": answer.strip(), "transcribed": transcribed} @app.get("/status") async def status(): """Simple endpoint to check if the server is running.""" import platform import sys import psutil logger.info("Status endpoint called") # Get memory info process = psutil.Process(os.getpid()) memory_info = process.memory_info() status_info = { "status": "ok", "message": "Server is running", "google_api_key_set": bool(os.environ.get("GOOGLE_API_KEY")), "vectorstore_loaded": store.get("value") is not None, "system_info": { "platform": platform.platform(), "python_version": sys.version, "memory_usage_mb": memory_info.rss / (1024 * 1024), "cpu_percent": process.cpu_percent(), "available_memory_mb": psutil.virtual_memory().available / (1024 * 1024) }, "env_vars": { "PORT": os.environ.get("PORT"), "SPACE_ID": os.environ.get("SPACE_ID"), "SYSTEM": os.environ.get("SYSTEM") } } logger.info(f"Status response: {status_info}") return status_info @app.post("/clear") async def clear_context(): """Clear the current document context and free up memory.""" global store logger.info("Clearing document context...") # Clear the store if store.get("value") is not None: store["value"] = None # Force garbage collection gc.collect() # Run a more aggressive memory cleanup try: if hasattr(gc, 'collect'): for i in range(3): # Run multiple collection cycles gc.collect(i) except Exception as e: logger.warning(f"Error during aggressive garbage collection: {e}") logger.info("Document context cleared successfully.") return {"status": "success", "message": "Document context cleared successfully."} else: logger.info("No document context to clear.") return {"status": "info", "message": "No document context was loaded."}