#!/usr/bin/env python3 import argparse import os import sys import tempfile import time import torch import torchaudio from tortoise.api import MODELS_DIR, TextToSpeech from tortoise.utils.audio import get_voices, load_voices, load_audio from tortoise.utils.text import split_and_recombine_text parser = argparse.ArgumentParser( description="TorToiSe is a text-to-speech program that is capable of synthesizing speech " "in multiple voices with realistic prosody and intonation." ) parser.add_argument( "text", type=str, nargs="*", help="Text to speak. If omitted, text is read from stdin.", ) parser.add_argument( "-v, --voice", type=str, default="random", metavar="VOICE", dest="voice", help="Selects the voice to use for generation. Use the & character to join two voices together. " 'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. ' "Note that multiple voices require the --output-dir option to be set.", ) parser.add_argument( "-V, --voices-dir", metavar="VOICES_DIR", type=str, dest="voices_dir", help="Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.", ) parser.add_argument( "-p, --preset", type=str, default="fast", choices=["ultra_fast", "fast", "standard", "high_quality"], dest="preset", help="Which voice quality preset to use.", ) parser.add_argument( "-q, --quiet", default=False, action="store_true", dest="quiet", help="Suppress all output.", ) output_group = parser.add_mutually_exclusive_group(required=True) output_group.add_argument( "-l, --list-voices", default=False, action="store_true", dest="list_voices", help="List available voices and exit.", ) output_group.add_argument( "-P, --play", action="store_true", dest="play", help="Play the audio (requires pydub).", ) output_group.add_argument( "-o, --output", type=str, metavar="OUTPUT", dest="output", help="Save the audio to a file.", ) output_group.add_argument( "-O, --output-dir", type=str, metavar="OUTPUT_DIR", dest="output_dir", help="Save the audio to a directory as individual segments.", ) multi_output_group = parser.add_argument_group( "multi-output options (requires --output-dir)" ) multi_output_group.add_argument( "--candidates", type=int, default=1, help="How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.", ) multi_output_group.add_argument( "--regenerate", type=str, default=None, help="Comma-separated list of clip numbers to re-generate.", ) multi_output_group.add_argument( "--skip-existing", action="store_true", help="Set to skip re-generating existing clips.", ) advanced_group = parser.add_argument_group("advanced options") advanced_group.add_argument( "--produce-debug-state", default=False, action="store_true", help="Whether or not to produce debug_states in current directory, which can aid in reproducing problems.", ) advanced_group.add_argument( "--seed", type=int, default=None, help="Random seed which can be used to reproduce results.", ) advanced_group.add_argument( "--models-dir", type=str, default=MODELS_DIR, help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to " "~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.", ) advanced_group.add_argument( "--text-split", type=str, default=None, help="How big chunks to split the text into, in the format ,.", ) advanced_group.add_argument( "--disable-redaction", default=False, action="store_true", help="Normally text enclosed in brackets are automatically redacted from the spoken output " "(but are still rendered by the model), this can be used for prompt engineering. " "Set this to disable this behavior.", ) advanced_group.add_argument( "--device", type=str, default=None, help="Device to use for inference." ) advanced_group.add_argument( "--batch-size", type=int, default=None, help="Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.", ) tuning_group = parser.add_argument_group("tuning options (overrides preset settings)") tuning_group.add_argument( "--num-autoregressive-samples", type=int, default=None, help="Number of samples taken from the autoregressive model, all of which are filtered using CLVP. " 'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".', ) tuning_group.add_argument( "--temperature", type=float, default=None, help="The softmax temperature of the autoregressive model.", ) tuning_group.add_argument( "--length-penalty", type=float, default=None, help="A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.", ) tuning_group.add_argument( "--repetition-penalty", type=float, default=None, help="A penalty that prevents the autoregressive decoder from repeating itself during decoding. " 'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.', ) tuning_group.add_argument( "--top-p", type=float, default=None, help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.', ) tuning_group.add_argument( "--max-mel-tokens", type=int, default=None, help="Restricts the output length. 1 to 600. Each unit is 1/20 of a second.", ) tuning_group.add_argument( "--cvvp-amount", type=float, default=None, help="How much the CVVP model should influence the output." "Increasing this can in some cases reduce the likelyhood of multiple speakers.", ) tuning_group.add_argument( "--diffusion-iterations", type=int, default=None, help="Number of diffusion steps to perform. More steps means the network has more chances to iteratively" "refine the output, which should theoretically mean a higher quality output. " "Generally a value above 250 is not noticeably better, however.", ) tuning_group.add_argument( "--cond-free", type=bool, default=None, help="Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for " "each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output " "of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and " "dramatically improves realism.", ) tuning_group.add_argument( "--cond-free-k", type=float, default=None, help="Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. " "As cond_free_k increases, the output becomes dominated by the conditioning-free signal. " "Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k", ) tuning_group.add_argument( "--diffusion-temperature", type=float, default=None, help="Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 " 'are the "mean" prediction of the diffusion network and will sound bland and smeared. ', ) usage_examples = f""" Examples: Read text using random voice and place it in a file: {parser.prog} -o hello.wav "Hello, how are you?" Read text from stdin and play it using the tom voice: echo "Say it like you mean it!" | {parser.prog} -P -v tom Read a text file using multiple voices and save the audio clips to a directory: {parser.prog} -O /tmp/tts-results -v tom,emma max_length: parser.error( f"--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})" ) texts = split_and_recombine_text(text, desired_length, max_length) else: texts = split_and_recombine_text(text) if len(texts) == 0: parser.error("no text provided") if args.output_dir: os.makedirs(args.output_dir, exist_ok=True) else: if len(selected_voices) > 1: parser.error('cannot have multiple voices without --output-dir"') if args.candidates > 1: parser.error('cannot have multiple candidates without --output-dir"') # error out early if pydub isn't installed if args.play: try: import pydub import pydub.playback except ImportError: parser.error( '--play requires pydub to be installed, which can be done with "pip install pydub"' ) seed = int(time.time()) if args.seed is None else args.seed if not args.quiet: print("Loading tts...") tts = TextToSpeech( models_dir=args.models_dir, enable_redaction=not args.disable_redaction, device=args.device, autoregressive_batch_size=args.batch_size, ) gen_settings = { "use_deterministic_seed": seed, "verbose": not args.quiet, "k": args.candidates, "preset": args.preset, } tuning_options = [ "num_autoregressive_samples", "temperature", "length_penalty", "repetition_penalty", "top_p", "max_mel_tokens", "cvvp_amount", "diffusion_iterations", "cond_free", "cond_free_k", "diffusion_temperature", ] for option in tuning_options: if getattr(args, option) is not None: gen_settings[option] = getattr(args, option) total_clips = len(texts) * len(selected_voices) regenerate_clips = ( [int(x) for x in args.regenerate.split(",")] if args.regenerate else None ) for voice_idx, voice in enumerate(selected_voices): audio_parts = [] voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs) for text_idx, text in enumerate(texts): clip_name = f'{"-".join(voice)}_{text_idx:02d}' if args.output_dir: first_clip = os.path.join(args.output_dir, f"{clip_name}_00.wav") if ( args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips) ) and os.path.exists(first_clip): audio_parts.append(load_audio(first_clip, 24000)) if not args.quiet: print(f"Skipping {clip_name}") continue if not args.quiet: print( f"Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})..." ) print(" " + text) gen = tts.tts_with_preset( text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings, ) gen = gen if args.candidates > 1 else [gen] for candidate_idx, audio in enumerate(gen): audio = audio.squeeze(0).cpu() if candidate_idx == 0: audio_parts.append(audio) if args.output_dir: filename = f"{clip_name}_{candidate_idx:02d}.wav" torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) audio = torch.cat(audio_parts, dim=-1) if args.output_dir: filename = f'{"-".join(voice)}_combined.wav' torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000) elif args.output: filename = args.output if args.output else os.tmp torchaudio.save(args.output, audio, 24000) elif args.play: f = tempfile.NamedTemporaryFile(suffix=".wav", delete=True) torchaudio.save(f.name, audio, 24000) pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) if args.produce_debug_state: os.makedirs("debug_states", exist_ok=True) dbg_state = (seed, texts, voice_samples, conditioning_latents, args) torch.save( dbg_state, os.path.join("debug_states", f'debug_{"-".join(voice)}.pth') )