import argparse import os from time import time import torch import torchaudio from api import TextToSpeech, MODELS_DIR from utils.audio import load_audio, load_voices from utils.text import split_and_recombine_text if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--textfile", type=str, help="A file containing the text to read.", default="tortoise/data/riding_hood.txt", ) parser.add_argument( "--voice", type=str, help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) " "Use the & character to join two voices together. Use a comma to perform inference on multiple voices.", default="pat", ) parser.add_argument( "--output_path", type=str, help="Where to store outputs.", default="results/longform/", ) parser.add_argument( "--preset", type=str, help="Which voice preset to use.", default="standard" ) parser.add_argument( "--regenerate", type=str, help="Comma-separated list of clip numbers to re-generate, or nothing.", default=None, ) parser.add_argument( "--candidates", type=int, help="How many output candidates to produce per-voice. Only the first candidate is actually used in the final product, the others can be used manually.", default=1, ) parser.add_argument( "--model_dir", type=str, help="Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this" "should only be specified if you have custom checkpoints.", default=MODELS_DIR, ) parser.add_argument( "--seed", type=int, help="Random seed which can be used to reproduce results.", default=None, ) parser.add_argument( "--produce_debug_state", type=bool, help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.", default=True, ) args = parser.parse_args() tts = TextToSpeech(models_dir=args.model_dir) outpath = args.output_path selected_voices = args.voice.split(",") regenerate = args.regenerate if regenerate is not None: regenerate = [int(e) for e in regenerate.split(",")] # Process text with open(args.textfile, "r", encoding="utf-8") as f: text = " ".join([l for l in f.readlines()]) if "|" in text: print( "Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not" "your intent, please remove all '|' characters from the input." ) texts = text.split("|") else: texts = split_and_recombine_text(text) seed = int(time()) if args.seed is None else args.seed for selected_voice in selected_voices: voice_outpath = os.path.join(outpath, selected_voice) os.makedirs(voice_outpath, exist_ok=True) if "&" in selected_voice: voice_sel = selected_voice.split("&") else: voice_sel = [selected_voice] voice_samples, conditioning_latents = load_voices(voice_sel) all_parts = [] for j, text in enumerate(texts): if regenerate is not None and j not in regenerate: all_parts.append( load_audio(os.path.join(voice_outpath, f"{j}.wav"), 24000) ) continue gen = tts.tts_with_preset( text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, preset=args.preset, k=args.candidates, use_deterministic_seed=seed, ) if args.candidates == 1: gen = gen.squeeze(0).cpu() torchaudio.save(os.path.join(voice_outpath, f"{j}.wav"), gen, 24000) else: candidate_dir = os.path.join(voice_outpath, str(j)) os.makedirs(candidate_dir, exist_ok=True) for k, g in enumerate(gen): torchaudio.save( os.path.join(candidate_dir, f"{k}.wav"), g.squeeze(0).cpu(), 24000, ) gen = gen[0].squeeze(0).cpu() all_parts.append(gen) if args.candidates == 1: full_audio = torch.cat(all_parts, dim=-1) torchaudio.save( os.path.join(voice_outpath, "combined.wav"), full_audio, 24000 ) if args.produce_debug_state: os.makedirs("debug_states", exist_ok=True) dbg_state = (seed, texts, voice_samples, conditioning_latents) torch.save(dbg_state, f"debug_states/read_debug_{selected_voice}.pth") # Combine each candidate's audio clips. if args.candidates > 1: audio_clips = [] for candidate in range(args.candidates): for line in range(len(texts)): wav_file = os.path.join( voice_outpath, str(line), f"{candidate}.wav" ) audio_clips.append(load_audio(wav_file, 24000)) audio_clips = torch.cat(audio_clips, dim=-1) torchaudio.save( os.path.join(voice_outpath, f"combined_{candidate:02d}.wav"), audio_clips, 24000, ) audio_clips = []