Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import from_pretrained_keras
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from rdkit import Chem, RDLogger
|
| 4 |
+
from rdkit.Chem.Draw import IPythonConsole, MolsToGridImage
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from tensorflow import keras
|
| 8 |
+
|
| 9 |
+
RDLogger.DisableLog("rdApp.*")
|
| 10 |
+
|
| 11 |
+
def graph_to_molecule(graph):
|
| 12 |
+
# Unpack graph
|
| 13 |
+
adjacency, features = graph
|
| 14 |
+
|
| 15 |
+
# RWMol is a molecule object intended to be edited
|
| 16 |
+
molecule = Chem.RWMol()
|
| 17 |
+
|
| 18 |
+
# Remove "no atoms" & atoms with no bonds
|
| 19 |
+
keep_idx = np.where(
|
| 20 |
+
(np.argmax(features, axis=1) != ATOM_DIM - 1)
|
| 21 |
+
& (np.sum(adjacency[:-1], axis=(0, 1)) != 0)
|
| 22 |
+
)[0]
|
| 23 |
+
features = features[keep_idx]
|
| 24 |
+
adjacency = adjacency[:, keep_idx, :][:, :, keep_idx]
|
| 25 |
+
|
| 26 |
+
# Add atoms to molecule
|
| 27 |
+
for atom_type_idx in np.argmax(features, axis=1):
|
| 28 |
+
atom = Chem.Atom(atom_mapping[atom_type_idx])
|
| 29 |
+
_ = molecule.AddAtom(atom)
|
| 30 |
+
|
| 31 |
+
# Add bonds between atoms in molecule; based on the upper triangles
|
| 32 |
+
# of the [symmetric] adjacency tensor
|
| 33 |
+
(bonds_ij, atoms_i, atoms_j) = np.where(np.triu(adjacency) == 1)
|
| 34 |
+
for (bond_ij, atom_i, atom_j) in zip(bonds_ij, atoms_i, atoms_j):
|
| 35 |
+
if atom_i == atom_j or bond_ij == BOND_DIM - 1:
|
| 36 |
+
continue
|
| 37 |
+
bond_type = bond_mapping[bond_ij]
|
| 38 |
+
molecule.AddBond(int(atom_i), int(atom_j), bond_type)
|
| 39 |
+
|
| 40 |
+
# Sanitize the molecule; for more information on sanitization, see
|
| 41 |
+
# https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization
|
| 42 |
+
flag = Chem.SanitizeMol(molecule, catchErrors=True)
|
| 43 |
+
# Let's be strict. If sanitization fails, return None
|
| 44 |
+
if flag != Chem.SanitizeFlags.SANITIZE_NONE:
|
| 45 |
+
return None
|
| 46 |
+
|
| 47 |
+
return molecule
|
| 48 |
+
|
| 49 |
+
generator = from_pretrained_keras("keras-io/wgan-molecular-graphs")
|
| 50 |
+
|
| 51 |
+
def predict(num_mol):
|
| 52 |
+
samples = num_mol*2
|
| 53 |
+
z = tf.random.normal((samples, 64))
|
| 54 |
+
graph = generator.predict(z)
|
| 55 |
+
# obtain one-hot encoded adjacency tensor
|
| 56 |
+
adjacency = tf.argmax(graph[0], axis=1)
|
| 57 |
+
adjacency = tf.one_hot(adjacency, depth=BOND_DIM, axis=1)
|
| 58 |
+
# Remove potential self-loops from adjacency
|
| 59 |
+
adjacency = tf.linalg.set_diag(adjacency, tf.zeros(tf.shape(adjacency)[:-1]))
|
| 60 |
+
# obtain one-hot encoded feature tensor
|
| 61 |
+
features = tf.argmax(graph[1], axis=2)
|
| 62 |
+
features = tf.one_hot(features, depth=5, axis=2)
|
| 63 |
+
molecules = [
|
| 64 |
+
graph_to_molecule([adjacency[i].numpy(), features[i].numpy()])
|
| 65 |
+
for i in range(samples)
|
| 66 |
+
]
|
| 67 |
+
MolsToGridImage(
|
| 68 |
+
[m for m in molecules if m is not None][:num_mol], molsPerRow=5, subImgSize=(150, 150), returnPNG=False,
|
| 69 |
+
).save("img.png")
|
| 70 |
+
return 'img.png'
|
| 71 |
+
|
| 72 |
+
gr.Interface(
|
| 73 |
+
predict,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.inputs.Slider(5, 50, label='Number of Molecular Graphs', step=5, default=10),
|
| 76 |
+
],
|
| 77 |
+
outputs="image",
|
| 78 |
+
).launch(debug=True)
|