Spaces:
No application file
No application file
Create app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
# Load model and tokenizer
|
5 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free"
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
def generate_text(prompt):
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
outputs = model.generate(inputs["input_ids"], max_length=50)
|
13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
|
15 |
-
#
|
16 |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
17 |
|
18 |
-
# Launch app
|
19 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
# Load the model and tokenizer from Hugging Face
|
5 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free"
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
# Define a function to generate text from the model
|
10 |
def generate_text(prompt):
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
outputs = model.generate(inputs["input_ids"], max_length=50)
|
13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
|
15 |
+
# Create the Gradio interface
|
16 |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
17 |
|
18 |
+
# Launch the app
|
19 |
iface.launch()
|