Spaces:
No application file
No application file
Create app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
-
# Load model and tokenizer
|
| 5 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free"
|
| 6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
|
| 9 |
-
#
|
| 10 |
def generate_text(prompt):
|
| 11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 12 |
outputs = model.generate(inputs["input_ids"], max_length=50)
|
| 13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
| 17 |
|
| 18 |
-
# Launch app
|
| 19 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
# Load the model and tokenizer from Hugging Face
|
| 5 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free"
|
| 6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
|
| 9 |
+
# Define a function to generate text from the model
|
| 10 |
def generate_text(prompt):
|
| 11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 12 |
outputs = model.generate(inputs["input_ids"], max_length=50)
|
| 13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 14 |
|
| 15 |
+
# Create the Gradio interface
|
| 16 |
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
| 17 |
|
| 18 |
+
# Launch the app
|
| 19 |
iface.launch()
|