|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
model_name = "distilgpt2" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
class TextRequest(BaseModel): |
|
text: str |
|
|
|
|
|
@app.post("/generate/") |
|
async def generate_text(request: TextRequest): |
|
|
|
inputs = tokenizer.encode(request.text, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(inputs, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.9, top_k=50) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": response} |
|
|
|
|
|
@app.get("/") |
|
async def read_root(): |
|
return {"message": "Welcome to the GPT-2 FastAPI server!"} |
|
|