Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Initialize FastAPI app
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load pre-trained DistilGPT-2 model and tokenizer
|
10 |
+
model_name = "distilgpt2" # Smaller GPT-2 model
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Pydantic model for request body
|
15 |
+
class TextRequest(BaseModel):
|
16 |
+
text: str
|
17 |
+
|
18 |
+
# Route to generate text
|
19 |
+
@app.post("/generate/")
|
20 |
+
async def generate_text(request: TextRequest):
|
21 |
+
# Encode the input text
|
22 |
+
inputs = tokenizer.encode(request.text, return_tensors="pt")
|
23 |
+
|
24 |
+
# Generate a response from the model
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model.generate(inputs, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.9, top_k=50)
|
27 |
+
|
28 |
+
# Decode the generated response
|
29 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
+
return {"generated_text": response}
|
31 |
+
|
32 |
+
# Optionally, you can add a root endpoint for checking server health
|
33 |
+
@app.get("/")
|
34 |
+
async def read_root():
|
35 |
+
return {"message": "Welcome to the GPT-2 FastAPI server!"}
|