File size: 32,188 Bytes
6560820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
from fastapi import FastAPI, HTTPException
import streamlit as st
import pandas as pd
from pydantic import BaseModel, Field, validator
import numpy as np
import plotly.graph_objects as go

from azure_openai import converse_with_patient, create_diagnosis 
from memory import get_conversation, store_conversation, update_conversation
import uuid

class ask_question (BaseModel):
    user_input: str
    id: str

app = FastAPI()


def generate_expert_confidence_chart(diagnosis):
    """

    Extracts expert confidence data from JSON and generates a multi-colored bar chart.

    """

    # Extract expert distribution data
    expert_distribution = diagnosis["expert_distribution"]

    # Process the data into a structured format
    rows = []
    for key, value in expert_distribution.items():
        expert, attribute = key.rsplit(", ", 1)  # Ensure splitting at the last comma
        rows.append({"Expert": expert, "Attribute": attribute, "Value": value})

    # Create a DataFrame
    df = pd.DataFrame(rows)

    # Filter the DataFrame for confidence values only
    df_confidence = df[df["Attribute"] == "confidence"].copy()

    # Merge confidence values with corresponding thinking explanations
    df_thinking = df[df["Attribute"] == "thinking"].copy()
    df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))

    # Convert confidence values to numeric
    df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])

    # Define a function to map confidence scores to colors
    def confidence_to_color(confidence):
        """

        Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).

        """
        red = np.array([255, 0, 0])
        green = np.array([0, 255, 0])
        blend_ratio = confidence / 100  # Normalize between 0 and 1
        blended_color = (1 - blend_ratio) * red + blend_ratio * green
        return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"

    # Apply color mapping
    df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)

    # Create the bar chart
    fig = go.Figure()

    # Add bars with customized colors and reduced spacing
    fig.add_trace(go.Bar(
        y=df_confidence["Expert"],
        x=df_confidence["Value_confidence"],
        text=df_confidence["Value_confidence"],
        hovertext=df_confidence["Value_thinking"],
        orientation="h",
        marker=dict(color=df_confidence["Color"]),
        width=0.3,  # Reduce bar width for closer spacing
        textposition="inside"
    ))

    # Update layout for better visibility
    fig.update_layout(
        title="Expert Confidence in Diagnosis",
        xaxis_title="Confidence Score",
        yaxis_title="Medical Expert",
        yaxis=dict(tickmode="linear", dtick=1, automargin=True),
        height=max(400, 40 * len(df_confidence)),  # Adjust height dynamically
        bargap=0.1  # Reduce spacing between bars
    )

    # Update hover template
    fig.update_traces(
        hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
    )

    # Show the plot
    return fig


# FastAPI interface routes
# @app.get("/")
# async def root():
#     return {"message": "Welcome to the GenAI Symptom Checker"}

# @app.post("/ask")
# async def ask_question(question: ask_question):
#     try:
#         user_input = question.user_input
#         conversation_id = question.id
   
#         exists, count, conversation_obj = get_conversation(conversation_id)
#         if count == 6:
#             response = converse_with_patient(conversation_obj, user_input)
#             store_conversation(conversation_id, conversation_id, user_input, response)
#             exists, count, conversation_obj = get_conversation(conversation_id)
#             diagnosis = create_diagnosis(conversation_obj)
#             return {"response": response, "count": count, "diagnosis": diagnosis}
#         if count > 6:
#             exists, count, conversation_obj = get_conversation(conversation_id)
#             diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
#             return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
#         if exists == "PASS":
#             response = converse_with_patient(conversation_obj, user_input)
#             update_conversation(conversation_id, conversation_id, user_input, response)
#             return {"response": response, "count": count, "diagnosis": "none"}
        
#         else:
#             response = converse_with_patient("",user_input)
#             store_conversation(conversation_id, conversation_id, user_input, response)
#             return {"response": response, "count": count, "diagnosis": "none"}

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=str(e))

# app config

st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
st.title("Virtual Clinician :medical_symbol:")

user_id = st.text_input("Name:", key="user_id")

conversation_id = user_id
# Ensure user_id is defined or fallback to a default value
if not user_id:
    st.warning("Hi, Who am I speaking with?")
else:
        # session state
        if "chat_history" not in st.session_state:
            st.session_state.chat_history = [
                {"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
            ]


        # conversation
        for message in st.session_state.chat_history:
            if message["role"] == "AI":
                with st.chat_message("AI"):
                    st.write(message["content"])
            elif message["role"] == "Human":
                with st.chat_message("Human"):
                    st.write(message["content"])

        # user input
        user_input = st.chat_input("Type your message here...")
        if user_input is not None and user_input != "":
            st.session_state.chat_history.append({"role": "Human", "content": user_input})
        

            with st.chat_message("Human"):
                st.markdown(user_input)

            # this functions checks to see if the conversation exists
            exists, count, conversation_obj = get_conversation(conversation_id)
            # if the conversation does not exist, it creates a new conversation 


            if count > 5:
                response = converse_with_patient(conversation_obj, user_input)
                conversation_obj = update_conversation(conversation_id, user_input, response)
                print(conversation_obj)
                with st.spinner("Creating a diagnosis..."):
                    outcome, diagnosis = create_diagnosis(conversation_obj)
                    if outcome == "SUCCESS":
                        st.subheader("Diagnosis Summary")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
                        st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
                        st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
                        st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
                        st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)

                    # if the diagnosis is not successful, display a message
                    if outcome == "FAIL1":
                        st.write("Diagnosis not available Failed to find concensus")
                        st.subheader("Incomplete Diagnosis")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Next Best Action:** See GP")
                        st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)

                    if outcome == "FAIL1":
                        st.write("Diagnosis not available Failed to match described symptoms with know symptoms  for AI diagnosis")
                        st.subheader("Incomplete Diagnosis")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
                        st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
                        st.write(f"**Next Best Action:** See GP")
                        st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)
            
            if exists == "PASS":
                    response = converse_with_patient(conversation_obj, user_input)
                    update_conversation(conversation_id, user_input, response)
                    st.session_state.chat_history.append({"role": "AI", "content": response})  
                    with st.chat_message("AI"):
                        st.write(response) 
                
            else:
                    response = converse_with_patient("",user_input)
                    store_conversation(conversation_id, user_input, response)
                    st.session_state.chat_history.append({"role": "AI", "content": response})    
                    with st.chat_message("AI"):
                        st.write(response)










    # if exists == "FAIL":
    #     response = converse_with_patient("",user_query)
    #     store_conversation(conversation_id, user_query, response)
    #     st.session_state.chat_history.append({"role": "AI", "content": response})

    # # if the conversation exists use it to inform the AI's context
    # response = converse_with_patient(st.session_state.chat_history, user_query)
    # # update the conversation with the new response
    # update_conversation(conversation_id, user_query, response)
    # once 6 interactions have been made, the AI will generate a diagnosis
    # if count > 6:
    #     # write last question to the chat log
    #     st.session_state.chat_history.append({"role": "Human", "content": user_query})
    #     # get an AI response
    #     response_data = converse_with_patient(st.session_state.chat_history, user_query)
    #     # write AI response to the chat
    #     st.session_state.chat_history.append({"role": "AI", "content": response_data})
    #     # send conversation to the AI to generate a diagnosis
    #     outcome, diagnosis = create_diagnosis(conversation_obj)
    #     # if the diagnosis is successful, display the diagnosis data
    #     if outcome == "PASS":
    #         st.subheader("Diagnosis Summary")
    #         st.write(f"**Consensus Confidence:** {['concensus_confidence']}%")
    #         st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
    #         st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
    #         st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
    #         st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
    #         st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
    #         st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")

    #         # Generate and display the plotly chart
    #         st.subheader("Expert Confidence Levels")
    #         fig = generate_expert_confidence_chart(diagnosis)
    #         st.plotly_chart(fig)

    #     # if the diagnosis is not successful, display a message
    #     else:
    #         st.write("Diagnosis not available")


  




# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go

# from azure_openai import converse_with_patient, create_diagnosis 
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation

# class AskQuestion(BaseModel):
#     user_input: str
#     id: str

# app = FastAPI()

# def generate_expert_confidence_chart(diagnosis):
#     """
#     Extracts expert confidence data from JSON and generates a multi-colored bar chart.
#     """
#     expert_distribution = diagnosis.get("expert_distribution", {})
#     rows = []
#     for key, value in expert_distribution.items():
#         expert, attribute = key.rsplit(", ", 1)
#         rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
#     df = pd.DataFrame(rows)
#     df_confidence = df[df["Attribute"] == "confidence"].copy()
#     df_thinking = df[df["Attribute"] == "thinking"].copy()
#     df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
#     df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])

#     def confidence_to_color(confidence):
#         red = np.array([255, 0, 0])
#         green = np.array([0, 255, 0])
#         blend_ratio = confidence / 100
#         blended_color = (1 - blend_ratio) * red + blend_ratio * green
#         return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
    
#     df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
#     fig = go.Figure()
#     fig.add_trace(go.Bar(
#         y=df_confidence["Expert"],
#         x=df_confidence["Value_confidence"],
#         text=df_confidence["Value_confidence"],
#         hovertext=df_confidence["Value_thinking"],
#         orientation="h",
#         marker=dict(color=df_confidence["Color"]),
#         width=0.3,
#         textposition="inside"
#     ))
#     fig.update_layout(
#         title="Expert Confidence in Diagnosis",
#         xaxis_title="Confidence Score",
#         yaxis_title="Medical Expert",
#         yaxis=dict(tickmode="linear", dtick=1, automargin=True),
#         height=max(400, 40 * len(df_confidence)),
#         bargap=0.1
#     )
#     fig.update_traces(
#         hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
#     )
#     return fig

# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")

# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = [
#         {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
#     ]

# for message in st.session_state.chat_history:
#     with st.chat_message(message["role"]):
#         st.write(message["content"])

# user_query = st.chat_input("Type your message here...")
# if user_query:
#     st.session_state.chat_history.append({"role": "Human", "content": user_query})
#     with st.chat_message("Human"):
#         st.markdown(user_query)

#     exists, count, conversation_obj = get_conversation(conversation_id)

#     if exists == "FAIL":
#         response_data = converse_with_patient("", user_query)
#         st.session_state.chat_history.append({"role": "AI", "content": response_data})
#         store_conversation(conversation_id, user_query, response_data)
        
        
#     else:
#         response_data = converse_with_patient(st.session_state.chat_history, user_query)
#         st.session_state.chat_history.append({"role": "AI", "content": response_data})
#         update_conversation(conversation_id, conversation_id, user_query, response_data)
        
    
#     if count >= 6:
#         st.session_state.chat_history.append({"role": "Human", "content": user_query})
#         response_data = converse_with_patient(st.session_state.chat_history, user_query)
#         st.session_state.chat_history.append({"role": "AI", "content": response_data})
#         outcome, diagnosis = create_diagnosis(conversation_obj)
#         if outcome == "PASS":
#             st.subheader("Diagnosis Summary")
#             st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
#             st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
#             st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
#             st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
#             st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
#             st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
#             st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
#             st.subheader("Expert Confidence Levels")
#             fig = generate_expert_confidence_chart(diagnosis)
#             st.plotly_chart(fig)
#         else:
#             st.write("Diagnosis not available")

    
#     st.session_state.chat_history.append({"role": "AI", "content": response_data})
#     with st.chat_message("AI"):
#         st.write(response_data)

# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go

# from azure_openai import converse_with_patient, create_diagnosis 
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation

# class AskQuestion(BaseModel):
#     user_input: str
#     id: str

# app = FastAPI()

# def generate_expert_confidence_chart(diagnosis):
#     """
#     Extracts expert confidence data from JSON and generates a multi-colored bar chart.
#     """
#     expert_distribution = diagnosis.get("expert_distribution", {})
#     rows = []
#     for key, value in expert_distribution.items():
#         expert, attribute = key.rsplit(", ", 1)
#         rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
#     df = pd.DataFrame(rows)
#     df_confidence = df[df["Attribute"] == "confidence"].copy()
#     df_thinking = df[df["Attribute"] == "thinking"].copy()
#     df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
#     df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])

#     def confidence_to_color(confidence):
#         red = np.array([255, 0, 0])
#         green = np.array([0, 255, 0])
#         blend_ratio = confidence / 100
#         blended_color = (1 - blend_ratio) * red + blend_ratio * green
#         return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
    
#     df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
#     fig = go.Figure()
#     fig.add_trace(go.Bar(
#         y=df_confidence["Expert"],
#         x=df_confidence["Value_confidence"],
#         text=df_confidence["Value_confidence"],
#         hovertext=df_confidence["Value_thinking"],
#         orientation="h",
#         marker=dict(color=df_confidence["Color"]),
#         width=0.3,
#         textposition="inside"
#     ))
#     fig.update_layout(
#         title="Expert Confidence in Diagnosis",
#         xaxis_title="Confidence Score",
#         yaxis_title="Medical Expert",
#         yaxis=dict(tickmode="linear", dtick=1, automargin=True),
#         height=max(400, 40 * len(df_confidence)),
#         bargap=0.1
#     )
#     fig.update_traces(
#         hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
#     )
#     return fig

# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")

# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = get_conversation(conversation_id)[2] or [
#         {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
#     ]

# for message in st.session_state.chat_history:
#     with st.chat_message(message["role"]):
#         st.write(message["content"])

# user_query = st.chat_input("Type your message here...")
# if user_query:
#     st.session_state.chat_history.append({"role": "Human", "content": user_query})
#     with st.chat_message("Human"):
#         st.markdown(user_query)
    
#     exists, count, conversation_obj = get_conversation(conversation_id)
#     if not exists:
#         response_data = converse_with_patient("", user_query)
#         st.session_state.chat_history.append({"role": "AI", "content": response_data})
#         store_conversation(conversation_id, conversation_id, user_query, response_data)
        
    
#     response_data = converse_with_patient(st.session_state.chat_history, user_query)
#     st.session_state.chat_history.append({"role": "AI", "content": response_data})
#     update_conversation(conversation_id, conversation_id, user_query, response_data)
    
#     if count >= 6:
#         outcome, diagnosis = create_diagnosis(conversation_obj)
#         if outcome == "PASS":
#             st.subheader("Diagnosis Summary")
#             st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
#             st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
#             st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
#             st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
#             st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
#             st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
#             st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
#             st.subheader("Expert Confidence Levels")
#             fig = generate_expert_confidence_chart(diagnosis)
#             st.plotly_chart(fig)
#         else:
#             st.write("Diagnosis not available")
    
#     with st.chat_message("AI"):
#         st.write(response_data)
    
#     store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)

# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go

# from azure_openai import converse_with_patient, create_diagnosis 
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation

# class AskQuestion(BaseModel):
#     user_input: str
#     id: str

# app = FastAPI()

# def generate_expert_confidence_chart(diagnosis):
#     """
#     Extracts expert confidence data from JSON and generates a multi-colored bar chart.
#     """
#     expert_distribution = diagnosis.get("expert_distribution", {})
#     rows = []
#     for key, value in expert_distribution.items():
#         expert, attribute = key.rsplit(", ", 1)
#         rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
#     df = pd.DataFrame(rows)
#     df_confidence = df[df["Attribute"] == "confidence"].copy()
#     df_thinking = df[df["Attribute"] == "thinking"].copy()
#     df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
#     df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])

#     def confidence_to_color(confidence):
#         red = np.array([255, 0, 0])
#         green = np.array([0, 255, 0])
#         blend_ratio = confidence / 100
#         blended_color = (1 - blend_ratio) * red + blend_ratio * green
#         return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
    
#     df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
#     fig = go.Figure()
#     fig.add_trace(go.Bar(
#         y=df_confidence["Expert"],
#         x=df_confidence["Value_confidence"],
#         text=df_confidence["Value_confidence"],
#         hovertext=df_confidence["Value_thinking"],
#         orientation="h",
#         marker=dict(color=df_confidence["Color"]),
#         width=0.3,
#         textposition="inside"
#     ))
#     fig.update_layout(
#         title="Expert Confidence in Diagnosis",
#         xaxis_title="Confidence Score",
#         yaxis_title="Medical Expert",
#         yaxis=dict(tickmode="linear", dtick=1, automargin=True),
#         height=max(400, 40 * len(df_confidence)),
#         bargap=0.1
#     )
#     fig.update_traces(
#         hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
#     )
#     return fig

# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")

# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = get_conversation(conversation_id)[2] or [
#         {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
#     ]

# for message in st.session_state.chat_history:
#     with st.chat_message(message["role"]):
#         st.write(message["content"])

# user_query = st.chat_input("Type your message here...")
# if user_query:
#     st.session_state.chat_history.append({"role": "Human", "content": user_query})
#     with st.chat_message("Human"):
#         st.markdown(user_query)
    
#     exists, count, conversation_obj = get_conversation(conversation_id)
#     if not exists:
#         response = converse_with_patient("", user_query)
#         store_conversation(conversation_id, conversation_id, user_query, response)
#         exists, count, conversation_obj = get_conversation(conversation_id)
    
#     response_data = converse_with_patient(st.session_state.chat_history, user_query)
#     st.session_state.chat_history.append({"role": "AI", "content": response_data})
#     update_conversation(conversation_id, conversation_id, user_query, response_data)
    
#     if count >= 6:
#         outcome, diagnosis = create_diagnosis(conversation_obj)
#         if outcome == "PASS":
#             st.subheader("Diagnosis Summary")
#             st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
#             st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
#             st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
#             st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
#             st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
#             st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
#             st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
#             st.subheader("Expert Confidence Levels")
#             fig = generate_expert_confidence_chart(diagnosis)
#             st.plotly_chart(fig)
#         else:
#             st.write("Diagnosis not available")
    
#     with st.chat_message("AI"):
#         st.write(response_data)
    
#     store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)

# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="πŸ€–")
# st.title("Virtual Clinician :toolbox:")

# # Fetch conversation history and ensure it's a list of dictionaries
# exists, count, conversation_obj = get_conversation(conversation_id)

# if "chat_history" not in st.session_state:
#     if isinstance(conversation_obj, list) and all(isinstance(item, dict) for item in conversation_obj):
#         st.session_state.chat_history = conversation_obj
#     else:
#         st.session_state.chat_history = [
#             {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
#         ]

# # Ensure each message is a dictionary before accessing its keys
# for message in st.session_state.chat_history:
#     if isinstance(message, dict) and "role" in message and "content" in message:
#         with st.chat_message(message["role"]):
#             st.write(message["content"])
#     else:
#         st.error("Invalid message format in chat history.")

# user_query = st.chat_input("Type your message here...")
# if user_query:
#     st.session_state.chat_history.append({"role": "Human", "content": user_query})
#     with st.chat_message("Human"):
#         st.markdown(user_query)

#     exists, count, conversation_obj = get_conversation(conversation_id)
    
#     if not exists:
#         response = converse_with_patient("", user_query)
#         store_conversation(conversation_id, conversation_id, user_query, response)
#         exists, count, conversation_obj = get_conversation(conversation_id)
    
#     response_data = converse_with_patient(st.session_state.chat_history, user_query)
#     st.session_state.chat_history.append({"role": "AI", "content": response_data})
#     update_conversation(conversation_id, conversation_id, user_query, response_data)

#     if count >= 6:
#         outcome, diagnosis = create_diagnosis(conversation_obj)
#         if outcome == "PASS":
#             st.subheader("Diagnosis Summary")
#             st.write(f"**Consensus Confidence:** {diagnosis.get('concensus_confidence', 'N/A')}%")
#             st.write(f"**Consensus Thinking:** {diagnosis.get('concensus_thinking', 'N/A')}")
#             st.write(f"**Evaluation Confidence:** {diagnosis.get('evaluate_confidence', 'N/A')}%")
#             st.write(f"**Evaluation Explanation:** {diagnosis.get('evaluate_explanation', 'N/A')}")
#             st.write(f"**Next Best Action:** {diagnosis.get('next_best_action_', 'N/A')}")
#             st.write(f"**Next Best Action Explanation:** {diagnosis.get('next_best_action_explanation', 'N/A')}")
#             st.write(f"**Next Best Action Confidence:** {diagnosis.get('next_best_action_confidence', 'N/A')}%")
#             st.subheader("Expert Confidence Levels")
#             fig = generate_expert_confidence_chart(diagnosis)
#             st.plotly_chart(fig)
#         else:
#             st.write("Diagnosis not available")

#     with st.chat_message("AI"):
#         st.write(response_data)

#     store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)