Spaces:
Running
Running
File size: 32,188 Bytes
6560820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
from fastapi import FastAPI, HTTPException
import streamlit as st
import pandas as pd
from pydantic import BaseModel, Field, validator
import numpy as np
import plotly.graph_objects as go
from azure_openai import converse_with_patient, create_diagnosis
from memory import get_conversation, store_conversation, update_conversation
import uuid
class ask_question (BaseModel):
user_input: str
id: str
app = FastAPI()
def generate_expert_confidence_chart(diagnosis):
"""
Extracts expert confidence data from JSON and generates a multi-colored bar chart.
"""
# Extract expert distribution data
expert_distribution = diagnosis["expert_distribution"]
# Process the data into a structured format
rows = []
for key, value in expert_distribution.items():
expert, attribute = key.rsplit(", ", 1) # Ensure splitting at the last comma
rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# Create a DataFrame
df = pd.DataFrame(rows)
# Filter the DataFrame for confidence values only
df_confidence = df[df["Attribute"] == "confidence"].copy()
# Merge confidence values with corresponding thinking explanations
df_thinking = df[df["Attribute"] == "thinking"].copy()
df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# Convert confidence values to numeric
df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# Define a function to map confidence scores to colors
def confidence_to_color(confidence):
"""
Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).
"""
red = np.array([255, 0, 0])
green = np.array([0, 255, 0])
blend_ratio = confidence / 100 # Normalize between 0 and 1
blended_color = (1 - blend_ratio) * red + blend_ratio * green
return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# Apply color mapping
df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# Create the bar chart
fig = go.Figure()
# Add bars with customized colors and reduced spacing
fig.add_trace(go.Bar(
y=df_confidence["Expert"],
x=df_confidence["Value_confidence"],
text=df_confidence["Value_confidence"],
hovertext=df_confidence["Value_thinking"],
orientation="h",
marker=dict(color=df_confidence["Color"]),
width=0.3, # Reduce bar width for closer spacing
textposition="inside"
))
# Update layout for better visibility
fig.update_layout(
title="Expert Confidence in Diagnosis",
xaxis_title="Confidence Score",
yaxis_title="Medical Expert",
yaxis=dict(tickmode="linear", dtick=1, automargin=True),
height=max(400, 40 * len(df_confidence)), # Adjust height dynamically
bargap=0.1 # Reduce spacing between bars
)
# Update hover template
fig.update_traces(
hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
)
# Show the plot
return fig
# FastAPI interface routes
# @app.get("/")
# async def root():
# return {"message": "Welcome to the GenAI Symptom Checker"}
# @app.post("/ask")
# async def ask_question(question: ask_question):
# try:
# user_input = question.user_input
# conversation_id = question.id
# exists, count, conversation_obj = get_conversation(conversation_id)
# if count == 6:
# response = converse_with_patient(conversation_obj, user_input)
# store_conversation(conversation_id, conversation_id, user_input, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# diagnosis = create_diagnosis(conversation_obj)
# return {"response": response, "count": count, "diagnosis": diagnosis}
# if count > 6:
# exists, count, conversation_obj = get_conversation(conversation_id)
# diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
# return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
# if exists == "PASS":
# response = converse_with_patient(conversation_obj, user_input)
# update_conversation(conversation_id, conversation_id, user_input, response)
# return {"response": response, "count": count, "diagnosis": "none"}
# else:
# response = converse_with_patient("",user_input)
# store_conversation(conversation_id, conversation_id, user_input, response)
# return {"response": response, "count": count, "diagnosis": "none"}
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
# app config
st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
st.title("Virtual Clinician :medical_symbol:")
user_id = st.text_input("Name:", key="user_id")
conversation_id = user_id
# Ensure user_id is defined or fallback to a default value
if not user_id:
st.warning("Hi, Who am I speaking with?")
else:
# session state
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
{"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
]
# conversation
for message in st.session_state.chat_history:
if message["role"] == "AI":
with st.chat_message("AI"):
st.write(message["content"])
elif message["role"] == "Human":
with st.chat_message("Human"):
st.write(message["content"])
# user input
user_input = st.chat_input("Type your message here...")
if user_input is not None and user_input != "":
st.session_state.chat_history.append({"role": "Human", "content": user_input})
with st.chat_message("Human"):
st.markdown(user_input)
# this functions checks to see if the conversation exists
exists, count, conversation_obj = get_conversation(conversation_id)
# if the conversation does not exist, it creates a new conversation
if count > 5:
response = converse_with_patient(conversation_obj, user_input)
conversation_obj = update_conversation(conversation_id, user_input, response)
print(conversation_obj)
with st.spinner("Creating a diagnosis..."):
outcome, diagnosis = create_diagnosis(conversation_obj)
if outcome == "SUCCESS":
st.subheader("Diagnosis Summary")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
# if the diagnosis is not successful, display a message
if outcome == "FAIL1":
st.write("Diagnosis not available Failed to find concensus")
st.subheader("Incomplete Diagnosis")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Next Best Action:** See GP")
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
if outcome == "FAIL1":
st.write("Diagnosis not available Failed to match described symptoms with know symptoms for AI diagnosis")
st.subheader("Incomplete Diagnosis")
st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
st.write(f"**Next Best Action:** See GP")
st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")
# Generate and display the plotly chart
st.subheader("Expert Confidence Levels")
fig = generate_expert_confidence_chart(diagnosis)
st.plotly_chart(fig)
if exists == "PASS":
response = converse_with_patient(conversation_obj, user_input)
update_conversation(conversation_id, user_input, response)
st.session_state.chat_history.append({"role": "AI", "content": response})
with st.chat_message("AI"):
st.write(response)
else:
response = converse_with_patient("",user_input)
store_conversation(conversation_id, user_input, response)
st.session_state.chat_history.append({"role": "AI", "content": response})
with st.chat_message("AI"):
st.write(response)
# if exists == "FAIL":
# response = converse_with_patient("",user_query)
# store_conversation(conversation_id, user_query, response)
# st.session_state.chat_history.append({"role": "AI", "content": response})
# # if the conversation exists use it to inform the AI's context
# response = converse_with_patient(st.session_state.chat_history, user_query)
# # update the conversation with the new response
# update_conversation(conversation_id, user_query, response)
# once 6 interactions have been made, the AI will generate a diagnosis
# if count > 6:
# # write last question to the chat log
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# # get an AI response
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# # write AI response to the chat
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# # send conversation to the AI to generate a diagnosis
# outcome, diagnosis = create_diagnosis(conversation_obj)
# # if the diagnosis is successful, display the diagnosis data
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# # Generate and display the plotly chart
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# # if the diagnosis is not successful, display a message
# else:
# st.write("Diagnosis not available")
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="π€")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if exists == "FAIL":
# response_data = converse_with_patient("", user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# store_conversation(conversation_id, user_query, response_data)
# else:
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# with st.chat_message("AI"):
# st.write(response_data)
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="π€")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response_data = converse_with_patient("", user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# store_conversation(conversation_id, conversation_id, user_query, response_data)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
# from fastapi import FastAPI, HTTPException
# import streamlit as st
# import pandas as pd
# from pydantic import BaseModel
# import numpy as np
# import plotly.graph_objects as go
# from azure_openai import converse_with_patient, create_diagnosis
# from memory import get_conversation, store_conversation, update_conversation, retrieve_conversation
# class AskQuestion(BaseModel):
# user_input: str
# id: str
# app = FastAPI()
# def generate_expert_confidence_chart(diagnosis):
# """
# Extracts expert confidence data from JSON and generates a multi-colored bar chart.
# """
# expert_distribution = diagnosis.get("expert_distribution", {})
# rows = []
# for key, value in expert_distribution.items():
# expert, attribute = key.rsplit(", ", 1)
# rows.append({"Expert": expert, "Attribute": attribute, "Value": value})
# df = pd.DataFrame(rows)
# df_confidence = df[df["Attribute"] == "confidence"].copy()
# df_thinking = df[df["Attribute"] == "thinking"].copy()
# df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))
# df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])
# def confidence_to_color(confidence):
# red = np.array([255, 0, 0])
# green = np.array([0, 255, 0])
# blend_ratio = confidence / 100
# blended_color = (1 - blend_ratio) * red + blend_ratio * green
# return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"
# df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)
# fig = go.Figure()
# fig.add_trace(go.Bar(
# y=df_confidence["Expert"],
# x=df_confidence["Value_confidence"],
# text=df_confidence["Value_confidence"],
# hovertext=df_confidence["Value_thinking"],
# orientation="h",
# marker=dict(color=df_confidence["Color"]),
# width=0.3,
# textposition="inside"
# ))
# fig.update_layout(
# title="Expert Confidence in Diagnosis",
# xaxis_title="Confidence Score",
# yaxis_title="Medical Expert",
# yaxis=dict(tickmode="linear", dtick=1, automargin=True),
# height=max(400, 40 * len(df_confidence)),
# bargap=0.1
# )
# fig.update_traces(
# hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
# )
# return fig
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="π€")
# st.title("Virtual Clinician :toolbox:")
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = get_conversation(conversation_id)[2] or [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# for message in st.session_state.chat_history:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response = converse_with_patient("", user_query)
# store_conversation(conversation_id, conversation_id, user_query, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
# st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
# st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
# st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
# st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
# st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
# st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
# conversation_id = "111a1"
# st.set_page_config(page_title="Virtual Clinician", page_icon="π€")
# st.title("Virtual Clinician :toolbox:")
# # Fetch conversation history and ensure it's a list of dictionaries
# exists, count, conversation_obj = get_conversation(conversation_id)
# if "chat_history" not in st.session_state:
# if isinstance(conversation_obj, list) and all(isinstance(item, dict) for item in conversation_obj):
# st.session_state.chat_history = conversation_obj
# else:
# st.session_state.chat_history = [
# {"role": "AI", "content": "Hello, I am the virtual clinician. How can I help you today?"},
# ]
# # Ensure each message is a dictionary before accessing its keys
# for message in st.session_state.chat_history:
# if isinstance(message, dict) and "role" in message and "content" in message:
# with st.chat_message(message["role"]):
# st.write(message["content"])
# else:
# st.error("Invalid message format in chat history.")
# user_query = st.chat_input("Type your message here...")
# if user_query:
# st.session_state.chat_history.append({"role": "Human", "content": user_query})
# with st.chat_message("Human"):
# st.markdown(user_query)
# exists, count, conversation_obj = get_conversation(conversation_id)
# if not exists:
# response = converse_with_patient("", user_query)
# store_conversation(conversation_id, conversation_id, user_query, response)
# exists, count, conversation_obj = get_conversation(conversation_id)
# response_data = converse_with_patient(st.session_state.chat_history, user_query)
# st.session_state.chat_history.append({"role": "AI", "content": response_data})
# update_conversation(conversation_id, conversation_id, user_query, response_data)
# if count >= 6:
# outcome, diagnosis = create_diagnosis(conversation_obj)
# if outcome == "PASS":
# st.subheader("Diagnosis Summary")
# st.write(f"**Consensus Confidence:** {diagnosis.get('concensus_confidence', 'N/A')}%")
# st.write(f"**Consensus Thinking:** {diagnosis.get('concensus_thinking', 'N/A')}")
# st.write(f"**Evaluation Confidence:** {diagnosis.get('evaluate_confidence', 'N/A')}%")
# st.write(f"**Evaluation Explanation:** {diagnosis.get('evaluate_explanation', 'N/A')}")
# st.write(f"**Next Best Action:** {diagnosis.get('next_best_action_', 'N/A')}")
# st.write(f"**Next Best Action Explanation:** {diagnosis.get('next_best_action_explanation', 'N/A')}")
# st.write(f"**Next Best Action Confidence:** {diagnosis.get('next_best_action_confidence', 'N/A')}%")
# st.subheader("Expert Confidence Levels")
# fig = generate_expert_confidence_chart(diagnosis)
# st.plotly_chart(fig)
# else:
# st.write("Diagnosis not available")
# with st.chat_message("AI"):
# st.write(response_data)
# store_conversation(conversation_id, conversation_id, "", st.session_state.chat_history)
|