Update app.py
Browse files
app.py
CHANGED
|
@@ -1,57 +1,33 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
from datetime import datetime
|
| 4 |
-
import json
|
| 5 |
import requests
|
| 6 |
import uuid
|
| 7 |
-
from datetime import date, datetime
|
| 8 |
from pydantic import BaseModel
|
| 9 |
-
from typing import Optional
|
| 10 |
|
| 11 |
# Placeholder personas
|
| 12 |
placeHolderPersona1 = """## Mission Statement
|
| 13 |
-
My mission is to utilize my expertise to aid in the medical triaging process by providing a clear, concise, and accurate assessment of potential arthritis related conditions.
|
| 14 |
-
|
| 15 |
-
# Triaging process
|
| 16 |
-
Ensure you stay on the topic of asking questions to triage the potential of Rheumatoid arthritis.
|
| 17 |
-
Ask only one question at a time.
|
| 18 |
-
Provide some context or clarification around the follow-up questions you ask.
|
| 19 |
-
Do not converse with the customer.
|
| 20 |
-
Be as concise as possible.
|
| 21 |
-
Do not give a diagnosis """
|
| 22 |
|
| 23 |
placeHolderPersona2 = """## Mission
|
| 24 |
-
To analyse a clinical triaging discussion between a patient and AI doctor interactions with a focus on Immunology symptoms, medical history, and test results to deduce the most probable Immunology diagnosis.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
Upon receipt of the clinical notes, I will follow a systematic approach to arrive at a diagnosis:
|
| 28 |
-
1. Review the patient's presenting symptoms and consider their relevance to immunopathology.
|
| 29 |
-
2. Cross-reference the gathered information with my knowledge base of immunology to identify patterns or indicators of specific immune disorders.
|
| 30 |
-
3. Formulate a diagnosis from the potential conditions.
|
| 31 |
-
4. Determine the most likely diagnosis and assign a confidence score from 1-100, with 100 being absolute certainty.
|
| 32 |
-
|
| 33 |
-
# Limitations
|
| 34 |
-
While I am specialized in immunology, I understand that not all cases will fall neatly within my domain. In instances where the clinical notes point to a condition outside of my expertise, I will provide the best possible diagnosis with the acknowledgment that my confidence score will reflect the limitations of my specialization in those cases"""
|
| 35 |
-
|
| 36 |
-
# Data model for API request
|
| 37 |
class ChatRequestClient(BaseModel):
|
| 38 |
user_id: str
|
| 39 |
user_input: str
|
| 40 |
numberOfQuestions: int
|
| 41 |
-
|
|
|
|
| 42 |
llm1: str
|
| 43 |
tokens1: int
|
| 44 |
temperature1: float
|
| 45 |
-
persona1SystemMessage: str
|
| 46 |
-
persona2SystemMessage: str
|
| 47 |
userMessage2: str
|
| 48 |
llm2: str
|
| 49 |
tokens2: int
|
| 50 |
temperature2: float
|
| 51 |
|
| 52 |
-
# Mock API call function
|
| 53 |
def call_chat_api(data: ChatRequestClient):
|
| 54 |
-
# Replace this with actual API logic
|
| 55 |
return {
|
| 56 |
"content": f"Response to: {data.user_input}",
|
| 57 |
"elapsed_time": 0.5,
|
|
@@ -59,53 +35,32 @@ def call_chat_api(data: ChatRequestClient):
|
|
| 59 |
"response_tokens": len(data.user_input.split()) # Mock token count
|
| 60 |
}
|
| 61 |
|
| 62 |
-
# Utility functions
|
| 63 |
-
def genuuid():
|
| 64 |
-
return uuid.uuid4()
|
| 65 |
-
|
| 66 |
def format_elapsed_time(time):
|
| 67 |
return "{:.2f}".format(time)
|
| 68 |
|
| 69 |
# Layout with three columns
|
| 70 |
-
col1, col2, col3 = st.columns([1,
|
| 71 |
|
| 72 |
# Left Column: Variables and Settings
|
| 73 |
with col1:
|
| 74 |
st.sidebar.image('cognizant_logo.jpg')
|
| 75 |
st.sidebar.header("Agent Personas Design")
|
| 76 |
st.sidebar.subheader("Intake AI")
|
| 77 |
-
numberOfQuestions = st.sidebar.slider(
|
| 78 |
-
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
)
|
| 87 |
-
tokens1 = st.sidebar.slider(
|
| 88 |
-
"Tokens", min_value=0, max_value=4000, step=100, value=500, key='persona1_tokens'
|
| 89 |
-
)
|
| 90 |
-
st.sidebar.subheader("Recommendation and Next Best Action AI")
|
| 91 |
-
persona2SystemMessage = st.sidebar.text_area(
|
| 92 |
-
"Define Recommendation Persona", value=placeHolderPersona2, height=300
|
| 93 |
-
)
|
| 94 |
-
llm2 = st.sidebar.selectbox("Model Selection", ['GPT-4', 'GPT3.5'], key='persona2_size')
|
| 95 |
-
temp2 = st.sidebar.slider(
|
| 96 |
-
"Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.5, key='persona2_temp'
|
| 97 |
-
)
|
| 98 |
-
tokens2 = st.sidebar.slider(
|
| 99 |
-
"Tokens", min_value=0, max_value=4000, step=100, value=500, key='persona2_tokens'
|
| 100 |
-
)
|
| 101 |
-
userMessage2 = st.sidebar.text_area(
|
| 102 |
-
"Define User Message", value="This is the conversation to date, ", height=150
|
| 103 |
-
)
|
| 104 |
-
st.sidebar.caption(f"Session ID: {genuuid()}")
|
| 105 |
|
| 106 |
# Middle Column: Chat Interface
|
| 107 |
with col2:
|
| 108 |
-
st.
|
|
|
|
|
|
|
| 109 |
user_id = st.text_input("User ID:", key="user_id")
|
| 110 |
|
| 111 |
if not user_id:
|
|
@@ -115,47 +70,47 @@ with col2:
|
|
| 115 |
if "messages" not in st.session_state:
|
| 116 |
st.session_state.messages = []
|
| 117 |
|
| 118 |
-
# Display chat history
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
#
|
| 124 |
if user_input := st.chat_input("Write your message here:"):
|
| 125 |
# Add user message
|
| 126 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 127 |
st.chat_message("user").markdown(user_input)
|
| 128 |
|
| 129 |
-
# Prepare API
|
| 130 |
data = ChatRequestClient(
|
| 131 |
user_id=user_id,
|
| 132 |
user_input=user_input,
|
| 133 |
numberOfQuestions=numberOfQuestions,
|
| 134 |
-
|
|
|
|
| 135 |
llm1=llm1,
|
| 136 |
tokens1=tokens1,
|
| 137 |
temperature1=temp1,
|
| 138 |
-
|
| 139 |
-
persona2SystemMessage=persona2SystemMessage,
|
| 140 |
-
userMessage2=userMessage2,
|
| 141 |
llm2=llm2,
|
| 142 |
tokens2=tokens2,
|
| 143 |
-
temperature2=temp2
|
| 144 |
)
|
| 145 |
|
| 146 |
# Call the API
|
| 147 |
response = call_chat_api(data)
|
| 148 |
|
| 149 |
# Process response
|
| 150 |
-
agent_message = response
|
| 151 |
-
elapsed_time = response
|
| 152 |
-
count = response
|
| 153 |
-
response_tokens = response
|
| 154 |
|
| 155 |
# Add agent response
|
| 156 |
st.session_state.messages.append({"role": "assistant", "content": agent_message})
|
| 157 |
-
|
| 158 |
-
st.markdown(agent_message)
|
| 159 |
|
| 160 |
# Right Column: Stats
|
| 161 |
with col3:
|
|
@@ -166,8 +121,3 @@ with col3:
|
|
| 166 |
st.markdown(f"**Response Tokens:** {response_tokens}")
|
| 167 |
else:
|
| 168 |
st.markdown("No stats available yet.")
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
from datetime import datetime
|
|
|
|
| 4 |
import requests
|
| 5 |
import uuid
|
|
|
|
| 6 |
from pydantic import BaseModel
|
|
|
|
| 7 |
|
| 8 |
# Placeholder personas
|
| 9 |
placeHolderPersona1 = """## Mission Statement
|
| 10 |
+
My mission is to utilize my expertise to aid in the medical triaging process by providing a clear, concise, and accurate assessment of potential arthritis related conditions."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
placeHolderPersona2 = """## Mission
|
| 13 |
+
To analyse a clinical triaging discussion between a patient and AI doctor interactions with a focus on Immunology symptoms, medical history, and test results to deduce the most probable Immunology diagnosis."""
|
| 14 |
+
|
| 15 |
+
# Mock API call function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
class ChatRequestClient(BaseModel):
|
| 17 |
user_id: str
|
| 18 |
user_input: str
|
| 19 |
numberOfQuestions: int
|
| 20 |
+
persona1SystemMessage: str
|
| 21 |
+
persona2SystemMessage: str
|
| 22 |
llm1: str
|
| 23 |
tokens1: int
|
| 24 |
temperature1: float
|
|
|
|
|
|
|
| 25 |
userMessage2: str
|
| 26 |
llm2: str
|
| 27 |
tokens2: int
|
| 28 |
temperature2: float
|
| 29 |
|
|
|
|
| 30 |
def call_chat_api(data: ChatRequestClient):
|
|
|
|
| 31 |
return {
|
| 32 |
"content": f"Response to: {data.user_input}",
|
| 33 |
"elapsed_time": 0.5,
|
|
|
|
| 35 |
"response_tokens": len(data.user_input.split()) # Mock token count
|
| 36 |
}
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def format_elapsed_time(time):
|
| 39 |
return "{:.2f}".format(time)
|
| 40 |
|
| 41 |
# Layout with three columns
|
| 42 |
+
col1, col2, col3 = st.columns([1, 3, 1]) # Adjusted width ratios for better centering
|
| 43 |
|
| 44 |
# Left Column: Variables and Settings
|
| 45 |
with col1:
|
| 46 |
st.sidebar.image('cognizant_logo.jpg')
|
| 47 |
st.sidebar.header("Agent Personas Design")
|
| 48 |
st.sidebar.subheader("Intake AI")
|
| 49 |
+
numberOfQuestions = st.sidebar.slider("Number of Questions", 0, 10, 5, 1)
|
| 50 |
+
persona1SystemMessage = st.sidebar.text_area("Define Intake Persona", value=placeHolderPersona1, height=300)
|
| 51 |
+
llm1 = st.sidebar.selectbox("Model Selection", ['GPT-4', 'GPT3.5'])
|
| 52 |
+
temp1 = st.sidebar.slider("Temperature", 0.0, 1.0, 0.6, 0.1)
|
| 53 |
+
tokens1 = st.sidebar.slider("Tokens", 0, 4000, 500, 100)
|
| 54 |
+
persona2SystemMessage = st.sidebar.text_area("Define Recommendation Persona", value=placeHolderPersona2, height=300)
|
| 55 |
+
llm2 = st.sidebar.selectbox("Model Selection", ['GPT-4', 'GPT3.5'], key="persona2")
|
| 56 |
+
temp2 = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5, 0.1, key="temp2")
|
| 57 |
+
tokens2 = st.sidebar.slider("Tokens", 0, 4000, 500, 100, key="tokens2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# Middle Column: Chat Interface
|
| 60 |
with col2:
|
| 61 |
+
st.markdown("<div style='text-align: center;'><h1>Chat with the Agents</h1></div>", unsafe_allow_html=True)
|
| 62 |
+
|
| 63 |
+
# User ID Input
|
| 64 |
user_id = st.text_input("User ID:", key="user_id")
|
| 65 |
|
| 66 |
if not user_id:
|
|
|
|
| 70 |
if "messages" not in st.session_state:
|
| 71 |
st.session_state.messages = []
|
| 72 |
|
| 73 |
+
# Display chat history in a container
|
| 74 |
+
with st.container():
|
| 75 |
+
for message in st.session_state.messages:
|
| 76 |
+
role = "User" if message["role"] == "user" else "Agent"
|
| 77 |
+
with st.chat_message(message["role"]):
|
| 78 |
+
st.markdown(message["content"])
|
| 79 |
|
| 80 |
+
# Chat input at the bottom
|
| 81 |
if user_input := st.chat_input("Write your message here:"):
|
| 82 |
# Add user message
|
| 83 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 84 |
st.chat_message("user").markdown(user_input)
|
| 85 |
|
| 86 |
+
# Prepare data for API call
|
| 87 |
data = ChatRequestClient(
|
| 88 |
user_id=user_id,
|
| 89 |
user_input=user_input,
|
| 90 |
numberOfQuestions=numberOfQuestions,
|
| 91 |
+
persona1SystemMessage=persona1SystemMessage,
|
| 92 |
+
persona2SystemMessage=persona2SystemMessage,
|
| 93 |
llm1=llm1,
|
| 94 |
tokens1=tokens1,
|
| 95 |
temperature1=temp1,
|
| 96 |
+
userMessage2="",
|
|
|
|
|
|
|
| 97 |
llm2=llm2,
|
| 98 |
tokens2=tokens2,
|
| 99 |
+
temperature2=temp2,
|
| 100 |
)
|
| 101 |
|
| 102 |
# Call the API
|
| 103 |
response = call_chat_api(data)
|
| 104 |
|
| 105 |
# Process response
|
| 106 |
+
agent_message = response["content"]
|
| 107 |
+
elapsed_time = response["elapsed_time"]
|
| 108 |
+
count = response["count"]
|
| 109 |
+
response_tokens = response["response_tokens"]
|
| 110 |
|
| 111 |
# Add agent response
|
| 112 |
st.session_state.messages.append({"role": "assistant", "content": agent_message})
|
| 113 |
+
st.chat_message("assistant").markdown(agent_message)
|
|
|
|
| 114 |
|
| 115 |
# Right Column: Stats
|
| 116 |
with col3:
|
|
|
|
| 121 |
st.markdown(f"**Response Tokens:** {response_tokens}")
|
| 122 |
else:
|
| 123 |
st.markdown("No stats available yet.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|