File size: 15,776 Bytes
7e8adfc 6fc21ca 7e8adfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
"""
All-in-One Marketing Image Generator with Proper A2A Architecture
Includes A2A Orchestrator + Agent1 (MCP-Imagen3) + Agent2 (Reviewer) + Gradio Interface
"""
import gradio as gr
import os
import logging
import asyncio
import json
from typing import Dict, Any
from PIL import Image
import io
import base64
# Google Service Account Authentication Setup
def setup_google_credentials():
"""Setup Google credentials from service account JSON"""
try:
service_account_json = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
if service_account_json:
import tempfile
from google.oauth2 import service_account
# Parse the JSON credentials
credentials_dict = json.loads(service_account_json)
# Create credentials from service account info
credentials = service_account.Credentials.from_service_account_info(credentials_dict)
# Set the credentials in environment
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(credentials_dict, f)
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = f.name
print("β
Google Cloud service account configured")
return True
except Exception as e:
print(f"β οΈ Google Cloud service account setup failed: {e}")
print("β οΈ Google Cloud service account not found")
return False
# Setup Google credentials on startup
setup_google_credentials()
# A2A imports
try:
from a2a_orchestrator import A2AOrchestrator
A2A_AVAILABLE = True
except ImportError:
A2A_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize A2A Orchestrator
if A2A_AVAILABLE:
orchestrator = A2AOrchestrator()
logger.info("β
A2A Orchestrator initialized")
else:
orchestrator = None
logger.warning("β οΈ A2A not available - will use fallback mode")
def process_generated_image_and_results(api_response):
"""Process API response and return image and review text for Gradio display"""
try:
response_data = api_response
if not response_data.get('success', False):
return None, f"β Generation failed: {response_data.get('error', 'Unknown error')}"
# Extract image data
image_info = response_data.get('image', {})
image_data_b64 = image_info.get('data', image_info.get('url', ''))
image = None
if image_data_b64 and image_data_b64.startswith('data:image'):
try:
base64_data = image_data_b64.split(',')[1]
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
# Extract review data
review_data = response_data.get('review', {})
if review_data:
quality_score = review_data.get('quality_score', 0)
passed = review_data.get('passed', False)
final_status = review_data.get('final_status', 'unknown')
iterations = review_data.get('iterations', 0)
recommendations = review_data.get('recommendations', [])
status_emoji = "π’" if passed else "π΄"
# Extract metadata about generation method
metadata = response_data.get('metadata', {})
generation_method = metadata.get('generation_method', 'unknown')
real_ai = metadata.get('real_ai_generation', False)
generation_info = ""
if generation_method == "imagen3-mcp":
generation_info = "π¨ **Generated with**: Imagen3-MCP (Real AI)\n"
elif generation_method == "google-genai-sdk":
generation_info = "π¨ **Generated with**: Google Genai SDK (Real AI)\n"
elif generation_method == "placeholder":
generation_info = "π¨ **Generated with**: Placeholder (Fallback)\n"
review_text = f"""**π A2A Marketing Review Results**
{generation_info}
**Quality Score:** {quality_score:.2f}/1.0
**Status:** {status_emoji} {final_status.upper()}
**Iterations:** {iterations}
**Architecture:** A2A Agent Communication
**π‘ Recommendations:**
"""
if recommendations:
for i, rec in enumerate(recommendations[:5], 1):
review_text += f"{i}. {rec}\n"
else:
review_text += "β’ Image meets quality standards\n"
# Add workflow history
workflow_history = review_data.get('workflow_history', [])
if workflow_history and len(workflow_history) > 1:
review_text += "\n**π A2A Workflow History:**\n"
for item in workflow_history:
iteration = item.get('iteration', 'N/A')
score = item.get('review_score', 'N/A')
review_text += f"β’ Iteration {iteration}: Score {score:.2f}\n"
else:
review_text = "β οΈ Review data not available"
return image, review_text
except Exception as e:
return None, f"β Error processing results: {str(e)}"
def generate_marketing_image_a2a(prompt, style, max_retries, review_threshold, review_guidelines):
"""Main function for the Gradio interface using A2A Orchestrator"""
if not prompt.strip():
return None, "β οΈ Please enter a prompt to generate an image."
if not A2A_AVAILABLE or not orchestrator:
return None, "β A2A Orchestrator not available. Please check setup."
try:
logger.info(f"π Starting A2A workflow for: {prompt}")
# Use the A2A orchestrator to coordinate agents
result = asyncio.run(
orchestrator.generate_image_with_review(
prompt=prompt,
style=style,
max_retries=max_retries,
review_threshold=review_threshold,
review_guidelines=review_guidelines
)
)
if result["success"]:
image, review_text = process_generated_image_and_results(result)
success_message = f"β
A2A Image generation successful!\n\n{review_text}"
return image, success_message
else:
error_message = f"β A2A Generation failed: {result.get('error', 'Unknown error')}"
return None, error_message
except Exception as e:
error_message = f"β A2A Error: {str(e)}"
logger.error(error_message)
return None, error_message
async def check_a2a_agents():
"""Check if A2A agents are available"""
if not orchestrator:
return {"agent1": False, "agent2": False, "orchestrator": False}
try:
health_status = await orchestrator.check_agents_health()
health_status["orchestrator"] = True
return health_status
except Exception as e:
logger.error(f"Error checking agent health: {e}")
return {"agent1": False, "agent2": False, "orchestrator": False}
def get_a2a_system_status():
"""Get A2A system status for display"""
if not A2A_AVAILABLE:
return "**π§ A2A System Status:**\n\nβ A2A not available\nβ οΈ Install google-a2a to enable A2A functionality"
try:
health_status = asyncio.run(check_a2a_agents())
status_text = "**π§ A2A System Status:**\n\n"
status_text += f"{'β
' if health_status.get('orchestrator', False) else 'β'} A2A Orchestrator\n"
status_text += f"{'β
' if health_status.get('agent1', False) else 'β'} Agent1 (Image Generator)\n"
status_text += f"{'β
' if health_status.get('agent2', False) else 'β'} Agent2 (Marketing Reviewer)\n"
all_healthy = all(health_status.values())
if all_healthy:
status_text += "\nπ All A2A agents are running!"
else:
status_text += "\nβ οΈ Some A2A agents are not responding."
status_text += "\nRun: `python a2a_servers.py` to start agents"
return status_text
except Exception as e:
return f"**π§ A2A System Status:**\n\nβ Error checking status: {str(e)}"
# Define suggested prompts (same as before)
SUGGESTED_PROMPTS = {
"Modern office team collaboration": ("A modern office space with diverse professionals collaborating around a sleek conference table, natural lighting, professional attire, English signage visible", "realistic"),
"Executive boardroom meeting": ("Professional executive boardroom with polished conference table, city skyline view, business documents, English presentations on screens", "realistic"),
"Customer service excellence": ("Professional customer service representative with headset in modern call center, English signage, clean corporate environment", "realistic"),
"Product showcase display": ("Clean product showcase on white background with professional lighting, English product labels, minimalist marketing aesthetic", "realistic"),
"Creative workspace design": ("Creative workspace with colorful design elements, inspirational English quotes on walls, modern furniture, artistic marketing materials", "artistic"),
"Brand presentation setup": ("Professional brand presentation setup with English branded materials, corporate colors, marketing displays, conference room setting", "realistic")
}
# Create Gradio interface
with gr.Blocks(title="A2A Marketing Image Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¨ A2A Marketing Image Generator
### Professional AI image generation with proper A2A agent architecture
**Agent1** (MCP-Imagen3) β **A2A** β **Agent2** (Marketing Reviewer) β **A2A** β **Orchestrator**
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βοΈ Configuration")
# Main inputs
prompt = gr.Textbox(
label="Describe your marketing image",
placeholder="e.g., A modern office space with natural lighting, featuring diverse professionals collaborating around a sleek conference table",
lines=4,
info="Be specific about the scene, style, mood, and any marketing elements you want to include"
)
style = gr.Dropdown(
choices=["realistic", "artistic", "cartoon", "photographic", "illustration"],
value="realistic",
label="Art Style",
info="Choose the artistic style for your generated image"
)
review_guidelines = gr.Textbox(
label="π Marketing Review Guidelines (Optional)",
placeholder="e.g., All text must be in English only, focus on professional appearance, ensure brand colors are prominent, check accessibility compliance, verify readability",
lines=3,
info="Provide specific marketing guidelines for the Marketing Reviewer to evaluate against your brand standards"
)
# Advanced settings
with gr.Accordion("π§ Advanced Settings", open=False):
max_retries = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Max Retries",
info="Maximum number of retry attempts if generation fails"
)
review_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
label="Quality Threshold",
info="Minimum quality score required for auto-approval"
)
# Generate button
generate_btn = gr.Button("π Generate with A2A Architecture", variant="primary", size="lg")
# Status
gr.Markdown("π **Mode**: A2A Agent-to-Agent Communication")
# System status
with gr.Accordion("π A2A System Status", open=False):
status_display = gr.Markdown(get_a2a_system_status())
refresh_status_btn = gr.Button("π Refresh A2A Status", size="sm")
with gr.Column(scale=2):
# Results display
gr.Markdown("### πΌοΈ Generated Image & A2A Review")
image_output = gr.Image(
label="Generated Marketing Image",
type="pil",
height=400,
show_download_button=True
)
review_output = gr.Markdown(
value="Click **Generate with A2A Architecture** to create your marketing image using agent-to-agent communication",
label="A2A Review Results"
)
# Suggested prompts section
gr.Markdown("---")
gr.Markdown("### π‘ Suggested Marketing Prompts")
with gr.Row():
with gr.Column():
gr.Markdown("**π’ Professional/Corporate**")
for prompt_name in ["Modern office team collaboration", "Executive boardroom meeting", "Customer service excellence"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
with gr.Column():
gr.Markdown("**π¨ Creative/Marketing**")
for prompt_name in ["Product showcase display", "Creative workspace design", "Brand presentation setup"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
# Event handlers
generate_btn.click(
fn=generate_marketing_image_a2a,
inputs=[prompt, style, max_retries, review_threshold, review_guidelines],
outputs=[image_output, review_output],
show_progress=True
)
refresh_status_btn.click(
fn=get_a2a_system_status,
outputs=status_display
)
# Footer
gr.Markdown("""
---
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
<p>π¨ A2A Marketing Image Generator | Proper Agent-to-Agent Architecture</p>
<p>Agent1 (MCP-Imagen3) + Agent2 (Reviewer) + A2A Orchestrator + Gradio Interface</p>
<p>Start agents with: <code>python a2a_servers.py</code></p>
</div>
""")
if __name__ == "__main__":
logger.info("π Starting A2A Marketing Image Generator")
logger.info(f"π€ A2A Available: {'β
Yes' if A2A_AVAILABLE else 'β No'}")
if A2A_AVAILABLE:
logger.info("π‘ Using proper A2A agent-to-agent communication")
logger.info("π Architecture: Gradio β Orchestrator β Agent1 (MCP-Imagen3) β Agent2 (Reviewer)")
logger.info("π Make sure to start agents: python a2a_servers.py")
else:
logger.warning("π‘ A2A not available - install google-a2a for full functionality")
demo.launch() |