File size: 33,660 Bytes
80c037a 57ccf92 7e8adfc 57ccf92 324a80f 7e8adfc 6fc21ca 324a80f 6fc21ca 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 22a36c5 57ccf92 22a36c5 57ccf92 22a36c5 57ccf92 7e8adfc 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 324a80f 57ccf92 7e8adfc 57ccf92 7e8adfc 22a36c5 7e8adfc 22a36c5 7e8adfc 324a80f 7e8adfc 324a80f 7e8adfc 324a80f 7e8adfc 57ccf92 7e8adfc 324a80f 57ccf92 7e8adfc 324a80f 7e8adfc 57ccf92 7e8adfc 324a80f 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 7e8adfc 57ccf92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
"""
Marketing Image Generator with Gradio MCP Server
Professional AI image generation using Google Imagen3 with marketing review
Deployed on HuggingFace Spaces with built-in MCP server support
"""
import gradio as gr
import os
import logging
import json
import base64
import asyncio
from typing import Dict, Any, Tuple, List
from PIL import Image
import io
# Google Service Account Authentication Setup
def setup_google_credentials():
"""Setup Google credentials from service account JSON"""
try:
service_account_json = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
if service_account_json:
import tempfile
from google.oauth2 import service_account
# Clean and parse the JSON credentials
# Remove common problematic characters
cleaned_json = service_account_json.strip()
# Replace common escape sequences
cleaned_json = cleaned_json.replace('\\n', '\n').replace('\\t', '\t').replace('\\r', '\r')
credentials_dict = json.loads(cleaned_json)
# Create credentials from service account info
credentials = service_account.Credentials.from_service_account_info(credentials_dict)
# Set the credentials in environment
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(credentials_dict, f)
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = f.name
print("β
Google Cloud service account configured")
return True
except Exception as e:
print(f"β οΈ Google Cloud service account setup failed: {e}")
print("β οΈ Google Cloud service account not found")
return False
# Setup Google credentials on startup
setup_google_credentials()
# Google AI imports
try:
import google.generativeai as genai
from google import genai as genai_sdk
GEMINI_AVAILABLE = True
except ImportError:
GEMINI_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get API keys - prioritize HuggingFace Secrets
GCP_KEYS = [
# Hugging Face Secrets (these are the primary ones for HF deployment)
os.getenv("GOOGLE_API_KEY"),
os.getenv("GEMINI_API_KEY"),
os.getenv("GCP_API_KEY"),
# Local development keys (fallback for local testing)
os.getenv("GCP_KEY_1"),
os.getenv("GCP_KEY_2"),
os.getenv("GCP_KEY_3"),
os.getenv("GCP_KEY_4"),
os.getenv("GCP_KEY_5"),
os.getenv("GCP_KEY_6")
]
GOOGLE_API_KEY = next((key for key in GCP_KEYS if key), None)
if GOOGLE_API_KEY and GEMINI_AVAILABLE:
genai.configure(api_key=GOOGLE_API_KEY)
logger.info("β
Google AI configured successfully")
logger.info(f"Key source: {[key for key in ['GOOGLE_API_KEY', 'GEMINI_API_KEY', 'GCP_API_KEY'] if os.getenv(key)]}")
else:
logger.warning(f"β Google AI NOT configured - GEMINI_AVAILABLE: {GEMINI_AVAILABLE}, GOOGLE_API_KEY: {'present' if GOOGLE_API_KEY else 'missing'}")
# MCP-enabled functions for Agent1 (Image Generator)
def enhance_prompt_with_gemini(prompt: str, style: str) -> str:
"""
Use Gemini to enhance the user's prompt for better image generation.
Args:
prompt (str): The original marketing prompt
style (str): The desired image style
Returns:
str: Enhanced prompt optimized for image generation
"""
if not GEMINI_AVAILABLE or not GOOGLE_API_KEY:
# Basic enhancement without Gemini
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, sharp focus",
"artistic": "artistic masterpiece, creative composition, painterly style",
"cartoon": "cartoon style, vibrant colors, playful, animated character design",
"photographic": "professional photograph, high quality, detailed, commercial photography",
"illustration": "digital illustration, clean vector art, modern design"
}
enhancer = style_enhancers.get(style.lower(), "high quality, detailed")
return f"{prompt}, {enhancer}"
try:
enhancement_prompt = f"""
You are an expert prompt engineer for AI image generation. Take this marketing prompt and enhance it for optimal results.
Original prompt: "{prompt}"
Desired style: "{style}"
Please provide an enhanced version that:
1. Maintains the core marketing intent
2. Adds specific technical details for better image quality
3. Includes appropriate style descriptors for "{style}" style
4. Adds professional marketing composition guidance
5. Keeps the enhanced prompt under 150 words
Return only the enhanced prompt without explanation.
"""
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(enhancement_prompt)
enhanced = response.text.strip()
logger.info(f"Gemini enhanced prompt: {enhanced}")
return enhanced
except Exception as e:
logger.warning(f"Failed to enhance prompt with Gemini: {e}")
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography",
"artistic": "artistic masterpiece, creative composition",
"cartoon": "cartoon style, vibrant colors, playful",
"photographic": "professional photograph, high quality, detailed",
"illustration": "digital illustration, clean design"
}
enhancer = style_enhancers.get(style.lower(), "high quality")
return f"{prompt}, {enhancer}"
def generate_marketing_image(prompt: str, style: str = "realistic") -> str:
"""
Generate a professional marketing image using Google Imagen3.
Args:
prompt (str): Description of the marketing image to generate
style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration)
Returns:
str: JSON string containing image data and metadata
"""
logger.info(f"π¨ Generating marketing image: {prompt}")
try:
# Enhance the prompt
enhanced_prompt = enhance_prompt_with_gemini(prompt, style)
# Try to generate with Google Genai SDK
if GEMINI_AVAILABLE and GOOGLE_API_KEY:
try:
logger.info("π¨ Using Google Genai SDK for image generation")
logger.info(f"API Key available: {GOOGLE_API_KEY[:10]}...")
# Initialize the genai SDK client
client = genai_sdk.Client(api_key=GOOGLE_API_KEY)
# Generate image using Imagen 3 via SDK
result = client.models.generate_images(
model="imagen-3.0-generate-002",
prompt=enhanced_prompt,
config={
"number_of_images": 1,
"output_mime_type": "image/png"
}
)
# Check if we got a valid response with images
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
generated_image = result.generated_images[0]
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
# Convert image bytes to base64 data URL
image_bytes = generated_image.image.image_bytes
img_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Determine MIME type from the response or default to PNG
mime_type = getattr(generated_image.image, 'mime_type', 'image/png')
image_url = f"data:{mime_type};base64,{img_base64}"
response_data = {
"success": True,
"image_url": image_url,
"prompt": prompt,
"enhanced_prompt": enhanced_prompt,
"style": style,
"generation_method": "google-genai-sdk",
"real_ai_generation": True
}
logger.info("β
Successfully generated real AI image with Google SDK!")
return json.dumps(response_data)
except Exception as e:
logger.error(f"Google SDK generation failed: {e}")
logger.error(f"Error type: {type(e).__name__}")
if hasattr(e, 'response'):
logger.error(f"Response status: {getattr(e.response, 'status_code', 'unknown')}")
logger.error(f"Response text: {getattr(e.response, 'text', 'unknown')}")
# Fallback: Generate a deterministic placeholder
logger.info("π Using placeholder URL fallback")
prompt_hash = abs(hash(enhanced_prompt)) % 10000
image_url = f"https://picsum.photos/seed/{prompt_hash}/1024/1024"
response_data = {
"success": True,
"image_url": image_url,
"prompt": prompt,
"enhanced_prompt": enhanced_prompt,
"style": style,
"generation_method": "placeholder",
"real_ai_generation": False
}
return json.dumps(response_data)
except Exception as e:
logger.error(f"Image generation failed: {e}")
return json.dumps({
"success": False,
"error": f"Generation failed: {str(e)}",
"prompt": prompt,
"style": style
})
def analyze_marketing_image_with_gemini(image_url: str, prompt: str, review_guidelines: str = "") -> str:
"""
Analyze a generated marketing image using Gemini Vision for quality, relevance, and compliance.
Args:
image_url (str): URL or base64 data of the generated image
prompt (str): The original marketing prompt used to generate the image
review_guidelines (str): Specific guidelines to check against
Returns:
str: JSON string containing detailed analysis and recommendations
"""
logger.info(f"π Analyzing marketing image with Gemini Vision: {prompt[:50]}...")
if not GEMINI_AVAILABLE or not GOOGLE_API_KEY:
logger.warning("Gemini Vision not available, using fallback analysis")
return _fallback_image_analysis(prompt, review_guidelines)
try:
# Create a detailed prompt for marketing image analysis
analysis_prompt = f"""
You are a Marketing Image Reviewer analyzing this image generated from: "{prompt}"
CUSTOM REVIEW GUIDELINES (HIGHEST PRIORITY):
{review_guidelines if review_guidelines.strip() else 'No specific guidelines provided - use standard marketing criteria'}
CRITICAL MARKETING CHECKS:
1. **Language/Text Requirements**: If guidelines mention "English" or specific language requirements, verify ALL visible text matches
2. **Brand Compliance**: Check professional appearance, color consistency, readability
3. **Marketing Effectiveness**: Assess visual appeal and message clarity
4. **Target Audience**: Evaluate cultural appropriateness and accessibility
Evaluate on these marketing criteria:
1. **Marketing Quality**: Visual appeal, composition, professional appearance (0.0 to 1.0)
2. **Brand/Prompt Compliance**: How well it matches requirements and guidelines (0.0 to 1.0)
3. **Marketing Effectiveness**: Message clarity, target audience appeal (0.0 to 1.0)
RESPONSE FORMAT:
Marketing Quality Score: [0.0-1.0]
Brand Compliance Score: [0.0-1.0]
Marketing Effectiveness Score: [0.0-1.0]
Guideline Violations: [List specific violations of user guidelines, especially language/text requirements]
Missing Elements: [List prompt elements missing from image]
Present Elements: [List prompt elements correctly represented]
Marketing Issues: [Brand compliance, readability, professional appearance problems]
Language/Text Issues: [Specific text/signage language violations if any]
Effectiveness Issues: [Marketing message clarity and appeal problems]
Marketing Recommendations: [Specific marketing-focused improvement suggestions]
CRITICAL: If guidelines specify English text/signage, explicitly check and report on ALL visible text language compliance.
"""
# Load the image
image = None
if image_url.startswith('data:image'):
# Handle base64 data URLs
base64_data = image_url.split(',')[1]
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
elif image_url.startswith('http'):
# Handle regular URLs
import requests
response = requests.get(image_url, timeout=10)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
else:
logger.error(f"Failed to fetch image from URL: {response.status_code}")
return _fallback_image_analysis(prompt, review_guidelines)
else:
logger.error("Invalid image URL format")
return _fallback_image_analysis(prompt, review_guidelines)
if not image:
logger.error("Could not load image for analysis")
return _fallback_image_analysis(prompt, review_guidelines)
# Generate analysis using Gemini Vision
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([analysis_prompt, image])
analysis_text = response.text
# Parse the analysis response
parsed_result = _parse_gemini_analysis(analysis_text, prompt)
logger.info(f"β
Gemini Vision analysis completed with score: {parsed_result.get('overall_score', 0)}")
return json.dumps(parsed_result)
except Exception as e:
logger.error(f"Error in Gemini Vision analysis: {str(e)}")
return _fallback_image_analysis(prompt, review_guidelines)
def _parse_gemini_analysis(analysis_text: str, original_prompt: str) -> Dict[str, Any]:
"""Parse Gemini Vision analysis response"""
try:
# Extract scores using regex patterns
import re
def extract_score(text: str, score_type: str) -> float:
pattern = rf"{score_type}.*?Score:\s*([0-9]*\.?[0-9]+)"
match = re.search(pattern, text, re.IGNORECASE)
if match:
return float(match.group(1))
return 0.7 # Default score
def extract_list_items(text: str, section: str) -> List[str]:
pattern = rf"{section}:\s*\[(.*?)\]"
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
if match:
items_text = match.group(1).strip()
if items_text:
return [item.strip() for item in items_text.split(',') if item.strip()]
return []
# Extract scores
marketing_quality = extract_score(analysis_text, "Marketing Quality")
brand_compliance = extract_score(analysis_text, "Brand Compliance")
marketing_effectiveness = extract_score(analysis_text, "Marketing Effectiveness")
# Calculate overall score
overall_score = (marketing_quality * 0.4 + brand_compliance * 0.4 + marketing_effectiveness * 0.2)
# Extract lists
violations = extract_list_items(analysis_text, "Guideline Violations")
missing_elements = extract_list_items(analysis_text, "Missing Elements")
present_elements = extract_list_items(analysis_text, "Present Elements")
marketing_issues = extract_list_items(analysis_text, "Marketing Issues")
language_issues = extract_list_items(analysis_text, "Language/Text Issues")
effectiveness_issues = extract_list_items(analysis_text, "Effectiveness Issues")
recommendations = extract_list_items(analysis_text, "Marketing Recommendations")
# Generate recommendations if none found
if not recommendations:
if overall_score > 0.8:
recommendations = ["Excellent marketing image! Meets all quality standards"]
elif overall_score > 0.6:
recommendations = ["Good marketing image with minor improvements needed"]
else:
recommendations = ["Image needs significant improvements for marketing use"]
return {
"success": True,
"overall_score": round(overall_score, 2),
"marketing_quality": round(marketing_quality, 2),
"brand_compliance": round(brand_compliance, 2),
"marketing_effectiveness": round(marketing_effectiveness, 2),
"violations": violations,
"missing_elements": missing_elements,
"present_elements": present_elements,
"marketing_issues": marketing_issues,
"language_issues": language_issues,
"effectiveness_issues": effectiveness_issues,
"recommendations": recommendations[:5], # Limit to top 5
"analysis_method": "gemini_vision",
"original_prompt": original_prompt
}
except Exception as e:
logger.error(f"Error parsing Gemini analysis: {str(e)}")
return _fallback_image_analysis(original_prompt, "")
def _fallback_image_analysis(prompt: str, review_guidelines: str) -> str:
"""Fallback analysis when Gemini Vision is not available"""
logger.info("Using fallback text-based analysis")
# Basic analysis based on prompt and guidelines
word_count = len(prompt.split())
# Simple scoring based on prompt quality
if word_count < 10:
quality_score = 0.5
elif word_count < 20:
quality_score = 0.7
else:
quality_score = 0.8
# Check for marketing keywords
marketing_keywords = ["professional", "corporate", "business", "marketing", "brand"]
marketing_score = sum(1 for word in marketing_keywords if word.lower() in prompt.lower()) / len(marketing_keywords)
# Check for language requirements
language_issues = []
if "english" in review_guidelines.lower() and "english" not in prompt.lower():
language_issues.append("English language requirement not specified in prompt")
# Generate recommendations
recommendations = []
if marketing_score < 0.2:
recommendations.append("Add marketing context (e.g., professional, business, corporate)")
if language_issues:
recommendations.extend(language_issues)
if word_count < 10:
recommendations.append("Expand prompt with more descriptive details")
if not recommendations:
recommendations = ["Image should meet basic marketing requirements"]
overall_score = (quality_score * 0.6 + marketing_score * 0.4)
return json.dumps({
"success": True,
"overall_score": round(overall_score, 2),
"marketing_quality": round(quality_score, 2),
"brand_compliance": round(marketing_score, 2),
"marketing_effectiveness": round(overall_score, 2),
"violations": language_issues,
"missing_elements": [],
"present_elements": [],
"marketing_issues": [],
"language_issues": language_issues,
"effectiveness_issues": [],
"recommendations": recommendations,
"analysis_method": "fallback_text",
"original_prompt": prompt
})
def generate_and_review_marketing_image(prompt: str, style: str = "realistic", review_guidelines: str = "") -> str:
"""
Complete workflow: Generate a marketing image and provide quality review.
Args:
prompt (str): Description of the marketing image to generate
style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration)
review_guidelines (str): Specific guidelines for marketing review
Returns:
str: JSON string containing image, review, and recommendations
"""
logger.info(f"π Starting complete marketing workflow for: {prompt}")
try:
# Step 1: Generate the image
generation_response = generate_marketing_image(prompt, style)
generation_data = json.loads(generation_response)
if not generation_data.get("success", False):
return generation_response # Return error
# Step 2: Analyze the generated image with Gemini Vision
image_url = generation_data.get("image_url", "")
analysis_response = analyze_marketing_image_with_gemini(image_url, prompt, review_guidelines)
analysis_data = json.loads(analysis_response)
# Combine results
workflow_result = {
"success": True,
"image": {
"url": generation_data.get("image_url", ""),
"data": generation_data.get("image_url", ""),
"prompt": prompt,
"style": style
},
"review": {
"quality_score": analysis_data.get("overall_score", 0.7),
"final_status": "passed" if analysis_data.get("overall_score", 0) > 0.7 else "needs_improvement",
"iterations": 1,
"passed": analysis_data.get("overall_score", 0) > 0.7,
"recommendations": analysis_data.get("recommendations", []),
"analysis_details": analysis_data
},
"metadata": {
"generation_method": generation_data.get("generation_method", "unknown"),
"real_ai_generation": generation_data.get("real_ai_generation", False),
"review_method": analysis_data.get("analysis_method", "unknown"),
"workflow_type": "gradio_mcp_server"
}
}
logger.info("β
Complete marketing workflow successful!")
return json.dumps(workflow_result)
except Exception as e:
logger.error(f"Complete workflow failed: {e}")
return json.dumps({
"success": False,
"error": f"Workflow failed: {str(e)}",
"prompt": prompt,
"style": style
})
# Gradio interface functions
def process_generated_image_and_results(api_response_str: str) -> Tuple[Image.Image, str]:
"""Process API response and return image and review text for Gradio display"""
try:
response_data = json.loads(api_response_str)
if not response_data.get('success', False):
return None, f"β Generation failed: {response_data.get('error', 'Unknown error')}"
# Extract image data
image_info = response_data.get('image', {})
image_data_b64 = image_info.get('data', image_info.get('url', ''))
image = None
if image_data_b64:
try:
if image_data_b64.startswith('data:image'):
# Handle base64 data URLs
base64_data = image_data_b64.split(',')[1]
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
elif image_data_b64.startswith('http'):
# Handle regular URLs (like picsum.photos)
import requests
response = requests.get(image_data_b64, timeout=10)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
else:
logger.error(f"Failed to fetch image from URL: {response.status_code}")
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
# Extract review data
review_data = response_data.get('review', {})
analysis_details = review_data.get('analysis_details', {})
if review_data:
quality_score = review_data.get('quality_score', 0)
passed = review_data.get('passed', False)
final_status = review_data.get('final_status', 'unknown')
recommendations = review_data.get('recommendations', [])
status_emoji = "π’" if passed else "π΄"
# Extract metadata about generation and review methods
metadata = response_data.get('metadata', {})
generation_method = metadata.get('generation_method', 'unknown')
review_method = metadata.get('review_method', 'unknown')
generation_info = ""
if generation_method == "google-genai-sdk":
generation_info = "π¨ **Generated with**: Google Imagen3 SDK (Real AI)\n"
elif generation_method == "placeholder":
generation_info = "π¨ **Generated with**: Placeholder (Fallback)\n"
review_method_info = ""
if review_method == "gemini_vision":
review_method_info = "π **Reviewed with**: Gemini Vision (AI Analysis)\n"
elif review_method == "fallback_text":
review_method_info = "π **Reviewed with**: Text Analysis (Fallback)\n"
# Get detailed scores from analysis
marketing_quality = analysis_details.get('marketing_quality', quality_score)
brand_compliance = analysis_details.get('brand_compliance', quality_score)
marketing_effectiveness = analysis_details.get('marketing_effectiveness', quality_score)
review_text = f"""**π Marketing Review Results**
{generation_info}{review_method_info}
**Quality Score:** {quality_score:.2f}/1.0
**Status:** {status_emoji} {final_status.upper()}
**Architecture:** Gradio MCP Server
**π Detailed Scores:**
β’ Marketing Quality: {marketing_quality:.2f}/1.0
β’ Brand Compliance: {brand_compliance:.2f}/1.0
β’ Marketing Effectiveness: {marketing_effectiveness:.2f}/1.0
**π‘ Recommendations:**
"""
if recommendations:
for i, rec in enumerate(recommendations[:5], 1):
review_text += f"{i}. {rec}\n"
else:
review_text += "β’ Image meets quality standards\n"
else:
review_text = "β οΈ Review data not available"
return image, review_text
except Exception as e:
return None, f"β Error processing results: {str(e)}"
def gradio_generate_marketing_image(prompt: str, style: str, review_guidelines: str) -> Tuple[Image.Image, str]:
"""Gradio interface wrapper for complete marketing image generation"""
if not prompt.strip():
return None, "β οΈ Please enter a prompt to generate an image."
try:
# Use the complete workflow function
result_json = generate_and_review_marketing_image(prompt, style, review_guidelines)
return process_generated_image_and_results(result_json)
except Exception as e:
error_message = f"β Error: {str(e)}"
logger.error(error_message)
return None, error_message
# Define suggested prompts
SUGGESTED_PROMPTS = {
"Modern office team collaboration": ("A modern office space with diverse professionals collaborating around a sleek conference table, natural lighting, professional attire, English signage visible", "realistic"),
"Executive boardroom meeting": ("Professional executive boardroom with polished conference table, city skyline view, business documents, English presentations on screens", "realistic"),
"Customer service excellence": ("Professional customer service representative with headset in modern call center, English signage, clean corporate environment", "realistic"),
"Product showcase display": ("Clean product showcase on white background with professional lighting, English product labels, minimalist marketing aesthetic", "realistic"),
"Creative workspace design": ("Creative workspace with colorful design elements, inspirational English quotes on walls, modern furniture, artistic marketing materials", "artistic"),
"Brand presentation setup": ("Professional brand presentation setup with English branded materials, corporate colors, marketing displays, conference room setting", "realistic")
}
# Create Gradio interface
with gr.Blocks(title="Marketing Image Generator MCP", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¨ Marketing Image Generator
### Professional AI image generation with built-in MCP server support
**Gradio MCP Server** β **Google Imagen3** β **Marketing Review** β **Results**
*MCP Server available at: `/gradio_api/mcp/sse`*
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βοΈ Configuration")
# Main inputs
prompt = gr.Textbox(
label="Describe your marketing image",
placeholder="e.g., A modern office space with natural lighting, featuring diverse professionals collaborating around a sleek conference table",
lines=4,
info="Be specific about the scene, style, mood, and any marketing elements you want to include"
)
style = gr.Dropdown(
choices=["realistic", "artistic", "cartoon", "photographic", "illustration"],
value="realistic",
label="Art Style",
info="Choose the artistic style for your generated image"
)
review_guidelines = gr.Textbox(
label="π Marketing Review Guidelines (Optional)",
placeholder="e.g., All text must be in English only, focus on professional appearance, ensure brand colors are prominent",
lines=3,
info="Provide specific marketing guidelines for review"
)
# Generate button
generate_btn = gr.Button("π Generate Marketing Image", variant="primary", size="lg")
# Status
gr.Markdown("π **Mode**: Gradio MCP Server")
gr.Markdown(f"π **API Status**: {'β
Configured' if GOOGLE_API_KEY else 'β No API Key'}")
with gr.Column(scale=2):
# Results display
gr.Markdown("### πΌοΈ Generated Image & Review")
image_output = gr.Image(
label="Generated Marketing Image",
type="pil",
height=400,
show_download_button=True
)
review_output = gr.Markdown(
value="Click **Generate Marketing Image** to create your marketing image with automated review",
label="Marketing Review Results"
)
# Suggested prompts section
gr.Markdown("---")
gr.Markdown("### π‘ Suggested Marketing Prompts")
with gr.Row():
with gr.Column():
gr.Markdown("**π’ Professional/Corporate**")
for prompt_name in ["Modern office team collaboration", "Executive boardroom meeting", "Customer service excellence"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
with gr.Column():
gr.Markdown("**π¨ Creative/Marketing**")
for prompt_name in ["Product showcase display", "Creative workspace design", "Brand presentation setup"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
# Event handlers
generate_btn.click(
fn=gradio_generate_marketing_image,
inputs=[prompt, style, review_guidelines],
outputs=[image_output, review_output],
show_progress=True
)
# Footer
gr.Markdown("""
---
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
<p>π¨ Marketing Image Generator | Gradio MCP Server</p>
<p>Image Generation + Marketing Review + MCP API</p>
<p>MCP Endpoint: <code>/gradio_api/mcp/sse</code></p>
</div>
""")
if __name__ == "__main__":
logger.info("π Starting Marketing Image Generator with MCP Server")
logger.info(f"π Google AI: {'β
Configured' if GOOGLE_API_KEY else 'β No API Key'}")
logger.info("π MCP Server will be available at /gradio_api/mcp/sse")
demo.launch(mcp_server=True) |