Noo88ear's picture
Update app.py
22a36c5 verified
raw
history blame
27.9 kB
"""
Marketing Image Generator with Gradio MCP Server
Professional AI image generation using Google Imagen3 with marketing review
Deployed on HuggingFace Spaces with built-in MCP server support
"""
import gradio as gr
import os
import logging
import json
import base64
import asyncio
from typing import Dict, Any, Tuple
from PIL import Image
import io
# Google Service Account Authentication Setup
def setup_google_credentials():
"""Setup Google credentials from service account JSON"""
try:
service_account_json = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
if service_account_json:
import tempfile
from google.oauth2 import service_account
# Parse the JSON credentials
credentials_dict = json.loads(service_account_json)
# Create credentials from service account info
credentials = service_account.Credentials.from_service_account_info(credentials_dict)
# Set the credentials in environment
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(credentials_dict, f)
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = f.name
print("βœ… Google Cloud service account configured")
return True
except Exception as e:
print(f"⚠️ Google Cloud service account setup failed: {e}")
print("⚠️ Google Cloud service account not found")
return False
# Setup Google credentials on startup
setup_google_credentials()
# Google AI imports
try:
import google.generativeai as genai
from google import genai as genai_sdk
GEMINI_AVAILABLE = True
except ImportError:
GEMINI_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get API keys - prioritize HuggingFace Secrets
GCP_KEYS = [
# Hugging Face Secrets (these are the primary ones for HF deployment)
os.getenv("GOOGLE_API_KEY"),
os.getenv("GEMINI_API_KEY"),
os.getenv("GCP_API_KEY"),
# Local development keys (fallback for local testing)
os.getenv("GCP_KEY_1"),
os.getenv("GCP_KEY_2"),
os.getenv("GCP_KEY_3"),
os.getenv("GCP_KEY_4"),
os.getenv("GCP_KEY_5"),
os.getenv("GCP_KEY_6")
]
GOOGLE_API_KEY = next((key for key in GCP_KEYS if key), None)
if GOOGLE_API_KEY and GEMINI_AVAILABLE:
genai.configure(api_key=GOOGLE_API_KEY)
logger.info("βœ… Google AI configured successfully")
logger.info(f"Key source: {[key for key in ['GOOGLE_API_KEY', 'GEMINI_API_KEY', 'GCP_API_KEY'] if os.getenv(key)]}")
else:
logger.warning(f"❌ Google AI NOT configured - GEMINI_AVAILABLE: {GEMINI_AVAILABLE}, GOOGLE_API_KEY: {'present' if GOOGLE_API_KEY else 'missing'}")
# MCP-enabled functions for Agent1 (Image Generator)
def enhance_prompt_with_gemini(prompt: str, style: str) -> str:
"""
Use Gemini to enhance the user's prompt for better image generation.
Args:
prompt (str): The original marketing prompt
style (str): The desired image style
Returns:
str: Enhanced prompt optimized for image generation
"""
if not GEMINI_AVAILABLE or not GOOGLE_API_KEY:
# Basic enhancement without Gemini
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography, sharp focus",
"artistic": "artistic masterpiece, creative composition, painterly style",
"cartoon": "cartoon style, vibrant colors, playful, animated character design",
"photographic": "professional photograph, high quality, detailed, commercial photography",
"illustration": "digital illustration, clean vector art, modern design"
}
enhancer = style_enhancers.get(style.lower(), "high quality, detailed")
return f"{prompt}, {enhancer}"
try:
enhancement_prompt = f"""
You are an expert prompt engineer for AI image generation. Take this marketing prompt and enhance it for optimal results.
Original prompt: "{prompt}"
Desired style: "{style}"
Please provide an enhanced version that:
1. Maintains the core marketing intent
2. Adds specific technical details for better image quality
3. Includes appropriate style descriptors for "{style}" style
4. Adds professional marketing composition guidance
5. Keeps the enhanced prompt under 150 words
Return only the enhanced prompt without explanation.
"""
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(enhancement_prompt)
enhanced = response.text.strip()
logger.info(f"Gemini enhanced prompt: {enhanced}")
return enhanced
except Exception as e:
logger.warning(f"Failed to enhance prompt with Gemini: {e}")
style_enhancers = {
"realistic": "photorealistic, high detail, professional photography",
"artistic": "artistic masterpiece, creative composition",
"cartoon": "cartoon style, vibrant colors, playful",
"photographic": "professional photograph, high quality, detailed",
"illustration": "digital illustration, clean design"
}
enhancer = style_enhancers.get(style.lower(), "high quality")
return f"{prompt}, {enhancer}"
def generate_marketing_image(prompt: str, style: str = "realistic") -> str:
"""
Generate a professional marketing image using Google Imagen3.
Args:
prompt (str): Description of the marketing image to generate
style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration)
Returns:
str: JSON string containing image data and metadata
"""
logger.info(f"🎨 Generating marketing image: {prompt}")
try:
# Enhance the prompt
enhanced_prompt = enhance_prompt_with_gemini(prompt, style)
# Try to generate with Google Genai SDK
if GEMINI_AVAILABLE and GOOGLE_API_KEY:
try:
logger.info("🎨 Using Google Genai SDK for image generation")
logger.info(f"API Key available: {GOOGLE_API_KEY[:10]}...")
# Initialize the genai SDK client
client = genai_sdk.Client(api_key=GOOGLE_API_KEY)
# Generate image using Imagen 3 via SDK
result = client.models.generate_images(
model="imagen-3.0-generate-002",
prompt=enhanced_prompt,
config={
"number_of_images": 1,
"output_mime_type": "image/png"
}
)
# Check if we got a valid response with images
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
generated_image = result.generated_images[0]
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
# Convert image bytes to base64 data URL
image_bytes = generated_image.image.image_bytes
img_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Determine MIME type from the response or default to PNG
mime_type = getattr(generated_image.image, 'mime_type', 'image/png')
image_url = f"data:{mime_type};base64,{img_base64}"
response_data = {
"success": True,
"image_url": image_url,
"prompt": prompt,
"enhanced_prompt": enhanced_prompt,
"style": style,
"generation_method": "google-genai-sdk",
"real_ai_generation": True
}
logger.info("βœ… Successfully generated real AI image with Google SDK!")
return json.dumps(response_data)
except Exception as e:
logger.error(f"Google SDK generation failed: {e}")
logger.error(f"Error type: {type(e).__name__}")
if hasattr(e, 'response'):
logger.error(f"Response status: {getattr(e.response, 'status_code', 'unknown')}")
logger.error(f"Response text: {getattr(e.response, 'text', 'unknown')}")
# Fallback: Generate a deterministic placeholder
logger.info("πŸ”„ Using placeholder URL fallback")
prompt_hash = abs(hash(enhanced_prompt)) % 10000
image_url = f"https://picsum.photos/seed/{prompt_hash}/1024/1024"
response_data = {
"success": True,
"image_url": image_url,
"prompt": prompt,
"enhanced_prompt": enhanced_prompt,
"style": style,
"generation_method": "placeholder",
"real_ai_generation": False
}
return json.dumps(response_data)
except Exception as e:
logger.error(f"Image generation failed: {e}")
return json.dumps({
"success": False,
"error": f"Generation failed: {str(e)}",
"prompt": prompt,
"style": style
})
def analyze_marketing_prompt(prompt: str, review_guidelines: str = "") -> str:
"""
Analyze a marketing prompt for quality, relevance, and compliance.
Args:
prompt (str): The marketing prompt to analyze
review_guidelines (str): Specific guidelines to check against
Returns:
str: JSON string containing detailed analysis and recommendations
"""
logger.info(f"πŸ” Analyzing marketing prompt: {prompt[:50]}...")
try:
word_count = len(prompt.split())
# Check for marketing-specific elements
marketing_keywords = [
"professional", "corporate", "business", "marketing", "brand", "commercial",
"office", "team", "collaboration", "presentation", "meeting", "workplace",
"customer", "service", "product", "showcase", "display", "advertising"
]
style_keywords = [
"realistic", "photographic", "artistic", "creative", "modern", "clean",
"minimalist", "professional", "high-quality", "detailed", "sharp"
]
composition_keywords = [
"lighting", "composition", "background", "foreground", "perspective",
"angle", "framing", "focus", "depth", "contrast", "colors"
]
# Count keyword categories
marketing_score = sum(1 for word in marketing_keywords if word.lower() in prompt.lower()) / len(marketing_keywords)
style_score = sum(1 for word in style_keywords if word.lower() in prompt.lower()) / len(style_keywords)
composition_score = sum(1 for word in composition_keywords if word.lower() in prompt.lower()) / len(composition_keywords)
# Base quality assessment
if word_count < 5:
base_quality = 0.3
quality_issues = ["Prompt is too short and lacks detail"]
elif word_count < 10:
base_quality = 0.5
quality_issues = ["Prompt could benefit from more descriptive details"]
elif word_count < 20:
base_quality = 0.7
quality_issues = []
elif word_count < 40:
base_quality = 0.8
quality_issues = []
else:
base_quality = 0.6
quality_issues = ["Prompt might be too complex - consider simplifying"]
# Adjust based on keyword presence
quality_adjustment = (marketing_score * 0.2 + style_score * 0.15 + composition_score * 0.15)
final_quality = min(1.0, base_quality + quality_adjustment)
# Generate specific feedback
missing_elements = []
if marketing_score < 0.1:
missing_elements.append("marketing context or business relevance")
if style_score < 0.1:
missing_elements.append("artistic style or visual quality descriptors")
if "english" in review_guidelines.lower() and "english" not in prompt.lower():
missing_elements.append("English language specification for text/signage")
present_elements = []
if marketing_score > 0.1:
present_elements.append("marketing/business context")
if style_score > 0.1:
present_elements.append("style descriptors")
if composition_score > 0.1:
present_elements.append("composition guidance")
# Calculate overall scores
relevance_score = min(1.0, final_quality + (marketing_score * 0.2))
safety_score = 0.95 # Generally high for marketing prompts
# Check for potentially problematic content
problematic_terms = ["violence", "inappropriate", "offensive", "controversial"]
for term in problematic_terms:
if term in prompt.lower():
safety_score = 0.7
break
overall_score = (final_quality * 0.4 + relevance_score * 0.4 + safety_score * 0.2)
# Generate recommendations
recommendations = []
if final_quality < 0.6:
recommendations.append("Consider adding more descriptive details about the desired image")
if marketing_score < 0.1:
recommendations.append("Add marketing context (e.g., professional, business, corporate)")
if "english" in review_guidelines.lower() and "english" not in prompt.lower():
recommendations.append("Add 'English signage' or 'English text' to meet language requirements")
if word_count < 10:
recommendations.append("Expand prompt with lighting, composition, or environmental details")
elif word_count > 50:
recommendations.append("Consider simplifying prompt while keeping key elements")
if not recommendations:
if overall_score > 0.8:
recommendations.append("Excellent prompt! Should generate high-quality marketing image")
else:
recommendations.append("Good prompt foundation - image should meet basic requirements")
analysis_result = {
"success": True,
"quality_score": round(final_quality, 2),
"relevance_score": round(relevance_score, 2),
"safety_score": round(safety_score, 2),
"overall_score": round(overall_score, 2),
"word_count": word_count,
"missing_elements": missing_elements,
"present_elements": present_elements,
"recommendations": recommendations[:5],
"analysis_method": "prompt_analysis"
}
return json.dumps(analysis_result)
except Exception as e:
logger.error(f"Prompt analysis failed: {e}")
return json.dumps({
"success": False,
"error": f"Analysis failed: {str(e)}",
"prompt": prompt
})
def generate_and_review_marketing_image(prompt: str, style: str = "realistic", review_guidelines: str = "") -> str:
"""
Complete workflow: Generate a marketing image and provide quality review.
Args:
prompt (str): Description of the marketing image to generate
style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration)
review_guidelines (str): Specific guidelines for marketing review
Returns:
str: JSON string containing image, review, and recommendations
"""
logger.info(f"🎭 Starting complete marketing workflow for: {prompt}")
try:
# Step 1: Generate the image
generation_response = generate_marketing_image(prompt, style)
generation_data = json.loads(generation_response)
if not generation_data.get("success", False):
return generation_response # Return error
# Step 2: Analyze the prompt (marketing review)
analysis_response = analyze_marketing_prompt(prompt, review_guidelines)
analysis_data = json.loads(analysis_response)
# Combine results
workflow_result = {
"success": True,
"image": {
"url": generation_data.get("image_url", ""),
"data": generation_data.get("image_url", ""),
"prompt": prompt,
"style": style
},
"review": {
"quality_score": analysis_data.get("overall_score", 0.7),
"final_status": "passed" if analysis_data.get("overall_score", 0) > 0.7 else "needs_improvement",
"iterations": 1,
"passed": analysis_data.get("overall_score", 0) > 0.7,
"recommendations": analysis_data.get("recommendations", []),
"analysis_details": analysis_data
},
"metadata": {
"generation_method": generation_data.get("generation_method", "unknown"),
"real_ai_generation": generation_data.get("real_ai_generation", False),
"workflow_type": "gradio_mcp_server"
}
}
logger.info("βœ… Complete marketing workflow successful!")
return json.dumps(workflow_result)
except Exception as e:
logger.error(f"Complete workflow failed: {e}")
return json.dumps({
"success": False,
"error": f"Workflow failed: {str(e)}",
"prompt": prompt,
"style": style
})
# Gradio interface functions
def process_generated_image_and_results(api_response_str: str) -> Tuple[Image.Image, str]:
"""Process API response and return image and review text for Gradio display"""
try:
response_data = json.loads(api_response_str)
if not response_data.get('success', False):
return None, f"❌ Generation failed: {response_data.get('error', 'Unknown error')}"
# Extract image data
image_info = response_data.get('image', {})
image_data_b64 = image_info.get('data', image_info.get('url', ''))
image = None
if image_data_b64:
try:
if image_data_b64.startswith('data:image'):
# Handle base64 data URLs
base64_data = image_data_b64.split(',')[1]
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
elif image_data_b64.startswith('http'):
# Handle regular URLs (like picsum.photos)
import requests
response = requests.get(image_data_b64, timeout=10)
if response.status_code == 200:
image = Image.open(io.BytesIO(response.content))
else:
logger.error(f"Failed to fetch image from URL: {response.status_code}")
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
# Extract review data
review_data = response_data.get('review', {})
if review_data:
quality_score = review_data.get('quality_score', 0)
passed = review_data.get('passed', False)
final_status = review_data.get('final_status', 'unknown')
recommendations = review_data.get('recommendations', [])
status_emoji = "🟒" if passed else "πŸ”΄"
# Extract metadata about generation method
metadata = response_data.get('metadata', {})
generation_method = metadata.get('generation_method', 'unknown')
generation_info = ""
if generation_method == "google-genai-sdk":
generation_info = "🎨 **Generated with**: Google Imagen3 SDK (Real AI)\n"
elif generation_method == "placeholder":
generation_info = "🎨 **Generated with**: Placeholder (Fallback)\n"
review_text = f"""**πŸ” Marketing Review Results**
{generation_info}
**Quality Score:** {quality_score:.2f}/1.0
**Status:** {status_emoji} {final_status.upper()}
**Architecture:** Gradio MCP Server
**πŸ’‘ Recommendations:**
"""
if recommendations:
for i, rec in enumerate(recommendations[:5], 1):
review_text += f"{i}. {rec}\n"
else:
review_text += "β€’ Image meets quality standards\n"
else:
review_text = "⚠️ Review data not available"
return image, review_text
except Exception as e:
return None, f"❌ Error processing results: {str(e)}"
def gradio_generate_marketing_image(prompt: str, style: str, review_guidelines: str) -> Tuple[Image.Image, str]:
"""Gradio interface wrapper for complete marketing image generation"""
if not prompt.strip():
return None, "⚠️ Please enter a prompt to generate an image."
try:
# Use the complete workflow function
result_json = generate_and_review_marketing_image(prompt, style, review_guidelines)
return process_generated_image_and_results(result_json)
except Exception as e:
error_message = f"❌ Error: {str(e)}"
logger.error(error_message)
return None, error_message
# Define suggested prompts
SUGGESTED_PROMPTS = {
"Modern office team collaboration": ("A modern office space with diverse professionals collaborating around a sleek conference table, natural lighting, professional attire, English signage visible", "realistic"),
"Executive boardroom meeting": ("Professional executive boardroom with polished conference table, city skyline view, business documents, English presentations on screens", "realistic"),
"Customer service excellence": ("Professional customer service representative with headset in modern call center, English signage, clean corporate environment", "realistic"),
"Product showcase display": ("Clean product showcase on white background with professional lighting, English product labels, minimalist marketing aesthetic", "realistic"),
"Creative workspace design": ("Creative workspace with colorful design elements, inspirational English quotes on walls, modern furniture, artistic marketing materials", "artistic"),
"Brand presentation setup": ("Professional brand presentation setup with English branded materials, corporate colors, marketing displays, conference room setting", "realistic")
}
# Create Gradio interface
with gr.Blocks(title="Marketing Image Generator MCP", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎨 Marketing Image Generator
### Professional AI image generation with built-in MCP server support
**Gradio MCP Server** β†’ **Google Imagen3** β†’ **Marketing Review** β†’ **Results**
*MCP Server available at: `/gradio_api/mcp/sse`*
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βš™οΈ Configuration")
# Main inputs
prompt = gr.Textbox(
label="Describe your marketing image",
placeholder="e.g., A modern office space with natural lighting, featuring diverse professionals collaborating around a sleek conference table",
lines=4,
info="Be specific about the scene, style, mood, and any marketing elements you want to include"
)
style = gr.Dropdown(
choices=["realistic", "artistic", "cartoon", "photographic", "illustration"],
value="realistic",
label="Art Style",
info="Choose the artistic style for your generated image"
)
review_guidelines = gr.Textbox(
label="πŸ” Marketing Review Guidelines (Optional)",
placeholder="e.g., All text must be in English only, focus on professional appearance, ensure brand colors are prominent",
lines=3,
info="Provide specific marketing guidelines for review"
)
# Generate button
generate_btn = gr.Button("πŸš€ Generate Marketing Image", variant="primary", size="lg")
# Status
gr.Markdown("πŸ” **Mode**: Gradio MCP Server")
gr.Markdown(f"πŸ”‘ **API Status**: {'βœ… Configured' if GOOGLE_API_KEY else '❌ No API Key'}")
with gr.Column(scale=2):
# Results display
gr.Markdown("### πŸ–ΌοΈ Generated Image & Review")
image_output = gr.Image(
label="Generated Marketing Image",
type="pil",
height=400,
show_download_button=True
)
review_output = gr.Markdown(
value="Click **Generate Marketing Image** to create your marketing image with automated review",
label="Marketing Review Results"
)
# Suggested prompts section
gr.Markdown("---")
gr.Markdown("### πŸ’‘ Suggested Marketing Prompts")
with gr.Row():
with gr.Column():
gr.Markdown("**🏒 Professional/Corporate**")
for prompt_name in ["Modern office team collaboration", "Executive boardroom meeting", "Customer service excellence"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
with gr.Column():
gr.Markdown("**🎨 Creative/Marketing**")
for prompt_name in ["Product showcase display", "Creative workspace design", "Brand presentation setup"]:
suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name]
btn = gr.Button(prompt_name, size="sm")
btn.click(
fn=lambda p=suggested_prompt, s=suggested_style: (p, s),
outputs=[prompt, style]
)
# Event handlers
generate_btn.click(
fn=gradio_generate_marketing_image,
inputs=[prompt, style, review_guidelines],
outputs=[image_output, review_output],
show_progress=True
)
# Footer
gr.Markdown("""
---
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
<p>🎨 Marketing Image Generator | Gradio MCP Server</p>
<p>Image Generation + Marketing Review + MCP API</p>
<p>MCP Endpoint: <code>/gradio_api/mcp/sse</code></p>
</div>
""")
if __name__ == "__main__":
logger.info("πŸš€ Starting Marketing Image Generator with MCP Server")
logger.info(f"πŸ”‘ Google AI: {'βœ… Configured' if GOOGLE_API_KEY else '❌ No API Key'}")
logger.info("πŸ”— MCP Server will be available at /gradio_api/mcp/sse")
demo.launch(mcp_server=True)