Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,24 @@
|
|
1 |
"""
|
2 |
-
Marketing Image Generator with Agent Review -
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
2. Image Reviewer Agent (using Google Gemini Vision)
|
7 |
-
3. Gradio UI for Hugging Face deployment
|
8 |
-
|
9 |
-
This combines the functionality of the entire marketing image generation system
|
10 |
-
into one deployable file for Hugging Face Spaces.
|
11 |
"""
|
12 |
|
13 |
import gradio as gr
|
14 |
-
import
|
|
|
|
|
15 |
import base64
|
|
|
16 |
import io
|
17 |
-
import
|
|
|
18 |
import re
|
19 |
import logging
|
20 |
import asyncio
|
|
|
21 |
from typing import Dict, Any, List, Optional
|
22 |
-
from PIL import Image
|
23 |
import google.generativeai as genai
|
24 |
from google import genai as genai_sdk
|
25 |
|
@@ -27,789 +26,736 @@ from google import genai as genai_sdk
|
|
27 |
logging.basicConfig(level=logging.INFO)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
-
# Configuration
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Initialize Google API with multiple authentication methods
|
35 |
-
def setup_google_auth():
|
36 |
-
"""Setup Google authentication with multiple fallback options"""
|
37 |
-
|
38 |
-
# Method 1: Try service account JSON (for Google Cloud APIs)
|
39 |
-
gcp_service_account = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
|
40 |
-
if gcp_service_account:
|
41 |
-
try:
|
42 |
-
import json
|
43 |
-
from google.oauth2 import service_account
|
44 |
-
import google.auth
|
45 |
-
|
46 |
-
# Parse the service account JSON
|
47 |
-
service_account_info = json.loads(gcp_service_account)
|
48 |
-
credentials = service_account.Credentials.from_service_account_info(service_account_info)
|
49 |
-
|
50 |
-
# Set up for Google Cloud APIs
|
51 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'temp_service_account.json'
|
52 |
-
with open('temp_service_account.json', 'w') as f:
|
53 |
-
json.dump(service_account_info, f)
|
54 |
-
|
55 |
-
logger.info("Google Cloud service account configured successfully")
|
56 |
-
return "service_account"
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
logger.warning(f"Failed to setup service account: {e}")
|
60 |
-
|
61 |
-
# Method 2: Try API keys (for Google AI Studio)
|
62 |
-
api_keys = [
|
63 |
-
os.getenv("GOOGLE_API_KEY"),
|
64 |
-
os.getenv("GOOGLE_AI_STUDIO_API_KEY"),
|
65 |
-
os.getenv("GCP_KEY_1"),
|
66 |
-
os.getenv("GCP_KEY_2"),
|
67 |
-
os.getenv("GCP_KEY_3")
|
68 |
-
]
|
69 |
-
|
70 |
-
google_api_key = next((key for key in api_keys if key), None)
|
71 |
-
if google_api_key:
|
72 |
-
try:
|
73 |
-
genai.configure(api_key=google_api_key)
|
74 |
-
logger.info("Google AI Studio API key configured successfully")
|
75 |
-
return google_api_key
|
76 |
-
except Exception as e:
|
77 |
-
logger.warning(f"Failed to configure API key: {e}")
|
78 |
-
|
79 |
-
logger.warning("No Google authentication found - using fallback mode")
|
80 |
-
return None
|
81 |
-
|
82 |
-
# Setup authentication
|
83 |
-
GOOGLE_AUTH = setup_google_auth()
|
84 |
|
85 |
-
#
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
self.name = "image_generator_agent"
|
92 |
-
|
93 |
-
async def enhance_prompt(self, prompt: str, style: str) -> str:
|
94 |
-
"""Enhance user prompt for better image generation"""
|
95 |
-
if not GOOGLE_AUTH:
|
96 |
-
# Basic enhancement without AI
|
97 |
-
style_enhancers = {
|
98 |
-
"realistic": "photorealistic, high detail, professional photography, marketing quality",
|
99 |
-
"artistic": "artistic masterpiece, creative composition, marketing appeal",
|
100 |
-
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
|
101 |
-
"illustration": "professional illustration, clean design, marketing material",
|
102 |
-
"photographic": "professional photograph, high quality, studio lighting, marketing shot"
|
103 |
-
}
|
104 |
-
enhancer = style_enhancers.get(style, "high quality, professional")
|
105 |
-
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
2. Adds specific technical details for image quality
|
117 |
-
3. Includes appropriate style descriptors for "{style}" style
|
118 |
-
4. Adds professional marketing composition guidance
|
119 |
-
5. Keeps the enhanced prompt under 150 words
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
try:
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
except Exception as e:
|
202 |
-
logger.warning(f"
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
(220, 20, 60), # Crimson
|
219 |
-
(255, 215, 0), # Gold
|
220 |
-
(147, 112, 219), # Medium Purple
|
221 |
-
(32, 178, 170) # Light Sea Green
|
222 |
-
]
|
223 |
-
|
224 |
-
color = colors[prompt_hash % len(colors)]
|
225 |
-
img = Image.new('RGB', (1024, 1024), color)
|
226 |
-
|
227 |
-
# Add some simple text overlay
|
228 |
try:
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
# Try to use a font, fallback to default
|
233 |
-
try:
|
234 |
-
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 48)
|
235 |
-
except:
|
236 |
-
font = ImageFont.load_default()
|
237 |
-
|
238 |
-
# Add text
|
239 |
-
text = f"Marketing Image\n{style.title()} Style"
|
240 |
-
draw.multiline_text((50, 450), text, fill=(255, 255, 255), font=font, align="center")
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
except Exception as e:
|
243 |
-
logger.warning(f"
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
img.save(img_buffer, format='PNG')
|
248 |
-
img_buffer.seek(0)
|
249 |
-
base64_image = base64.b64encode(img_buffer.read()).decode('utf-8')
|
250 |
-
|
251 |
-
return {
|
252 |
-
"success": True,
|
253 |
-
"image_data": f"data:image/png;base64,{base64_image}",
|
254 |
-
"enhanced_prompt": enhanced_prompt,
|
255 |
-
"method": "Fallback Demo"
|
256 |
-
}
|
257 |
-
|
258 |
-
except Exception as e:
|
259 |
-
logger.error(f"Fallback generation failed: {e}")
|
260 |
-
return {"success": False, "error": str(e)}
|
261 |
-
|
262 |
-
# ====== IMAGE REVIEWER AGENT ======
|
263 |
-
|
264 |
-
class ImageReviewerAgent:
|
265 |
-
"""Agent responsible for reviewing generated images for quality and relevance"""
|
266 |
-
|
267 |
-
def __init__(self):
|
268 |
-
self.name = "image_reviewer_agent"
|
269 |
-
|
270 |
-
def parse_prompt_elements(self, prompt: str) -> Dict[str, List[str]]:
|
271 |
-
"""Parse prompt to extract key elements for validation"""
|
272 |
-
prompt_lower = prompt.lower()
|
273 |
-
|
274 |
-
# Define patterns for different element types
|
275 |
-
patterns = {
|
276 |
-
"subjects": [
|
277 |
-
r'\b(person|man|woman|child|people|human|figure|team|group)\b',
|
278 |
-
r'\b(product|device|phone|laptop|car|building|office|space)\b',
|
279 |
-
r'\b(logo|brand|company|business|service)\b'
|
280 |
-
],
|
281 |
-
"style": [
|
282 |
-
r'\b(realistic|photorealistic|photograph|photo)\b',
|
283 |
-
r'\b(artistic|painting|drawing|illustration)\b',
|
284 |
-
r'\b(modern|contemporary|minimalist|professional)\b',
|
285 |
-
r'\b(cartoon|animated|3d|rendered)\b'
|
286 |
-
],
|
287 |
-
"colors": [
|
288 |
-
r'\b(blue|red|green|yellow|orange|purple|pink|black|white|gray|grey)\b',
|
289 |
-
r'\b(bright|dark|light|vibrant|muted|pastel|neon)\b',
|
290 |
-
r'\b(colorful|monochrome|gradient)\b'
|
291 |
-
],
|
292 |
-
"settings": [
|
293 |
-
r'\b(office|studio|outdoor|indoor|background|scene)\b',
|
294 |
-
r'\b(professional|corporate|casual|formal)\b',
|
295 |
-
r'\b(lighting|natural light|studio lighting)\b'
|
296 |
-
],
|
297 |
-
"marketing": [
|
298 |
-
r'\b(marketing|advertisement|promotional|campaign|brand)\b',
|
299 |
-
r'\b(professional|business|corporate|commercial)\b',
|
300 |
-
r'\b(hero|banner|social media|web|digital)\b'
|
301 |
-
]
|
302 |
-
}
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
for pattern in patterns_list:
|
307 |
-
found = re.findall(pattern, text)
|
308 |
-
matches.update(found)
|
309 |
-
return list(matches)
|
310 |
|
311 |
return {
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
}
|
315 |
-
|
316 |
-
async def review_image(self, image_data: str, original_prompt: str, enhanced_prompt: str) -> Dict[str, Any]:
|
317 |
-
"""Review generated image for quality and relevance"""
|
318 |
-
try:
|
319 |
-
logger.info("Starting image review analysis")
|
320 |
-
|
321 |
-
# Parse prompt elements
|
322 |
-
prompt_elements = self.parse_prompt_elements(original_prompt)
|
323 |
-
|
324 |
-
# Try AI-powered review if API available
|
325 |
-
if GOOGLE_AUTH and image_data.startswith("data:image"):
|
326 |
-
ai_review = await self._ai_powered_review(image_data, original_prompt, enhanced_prompt, prompt_elements)
|
327 |
-
if ai_review:
|
328 |
-
return ai_review
|
329 |
-
|
330 |
-
# Fallback to prompt-based analysis
|
331 |
-
return await self._prompt_based_review(original_prompt, enhanced_prompt, prompt_elements)
|
332 |
-
|
333 |
-
except Exception as e:
|
334 |
-
logger.error(f"Image review failed: {e}")
|
335 |
-
return self._fallback_review(original_prompt)
|
336 |
-
|
337 |
-
async def _ai_powered_review(self, image_data: str, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Optional[Dict[str, Any]]:
|
338 |
-
"""Review image using Google Gemini Vision"""
|
339 |
-
try:
|
340 |
-
# Extract image from data URL
|
341 |
-
if not image_data.startswith("data:image"):
|
342 |
-
return None
|
343 |
-
|
344 |
-
image_b64 = image_data.split(',')[1]
|
345 |
-
image_bytes = base64.b64decode(image_b64)
|
346 |
-
image = Image.open(io.BytesIO(image_bytes))
|
347 |
-
|
348 |
-
# Create detailed analysis prompt
|
349 |
-
analysis_prompt = f"""
|
350 |
-
Analyze this marketing image that was generated from: "{original_prompt}"
|
351 |
-
Enhanced prompt used: "{enhanced_prompt}"
|
352 |
-
|
353 |
-
Key elements to verify:
|
354 |
-
- Subjects: {', '.join(prompt_elements.get('subjects', []))}
|
355 |
-
- Style: {', '.join(prompt_elements.get('style', []))}
|
356 |
-
- Colors: {', '.join(prompt_elements.get('colors', []))}
|
357 |
-
- Setting: {', '.join(prompt_elements.get('settings', []))}
|
358 |
-
- Marketing elements: {', '.join(prompt_elements.get('marketing', []))}
|
359 |
-
|
360 |
-
Rate the image on:
|
361 |
-
1. Technical Quality (0.0-1.0): clarity, composition, lighting, resolution
|
362 |
-
2. Prompt Relevance (0.0-1.0): how well it matches the original request
|
363 |
-
3. Marketing Effectiveness (0.0-1.0): professional appeal, brand suitability
|
364 |
-
|
365 |
-
Provide response in this format:
|
366 |
-
QUALITY_SCORE: [0.0-1.0]
|
367 |
-
RELEVANCE_SCORE: [0.0-1.0]
|
368 |
-
MARKETING_SCORE: [0.0-1.0]
|
369 |
-
|
370 |
-
STRENGTHS: [List 2-3 strong points]
|
371 |
-
ISSUES: [List 2-3 improvement areas]
|
372 |
-
RECOMMENDATIONS: [List 2-3 specific suggestions]
|
373 |
-
|
374 |
-
OVERALL_ASSESSMENT: [Brief summary of the image's marketing potential]
|
375 |
-
"""
|
376 |
-
|
377 |
-
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
378 |
-
response = model.generate_content([analysis_prompt, image])
|
379 |
-
analysis_text = response.text
|
380 |
-
|
381 |
-
return self._parse_ai_review(analysis_text, original_prompt)
|
382 |
-
|
383 |
-
except Exception as e:
|
384 |
-
logger.warning(f"AI-powered review failed: {e}")
|
385 |
-
return None
|
386 |
-
|
387 |
-
def _parse_ai_review(self, analysis_text: str, original_prompt: str) -> Dict[str, Any]:
|
388 |
-
"""Parse AI review response into structured feedback"""
|
389 |
-
|
390 |
-
def extract_score(text: str, score_type: str) -> float:
|
391 |
-
pattern = rf"{score_type}_SCORE:\s*([\d.]+)"
|
392 |
-
match = re.search(pattern, text, re.IGNORECASE)
|
393 |
-
if match:
|
394 |
-
try:
|
395 |
-
return min(1.0, max(0.0, float(match.group(1))))
|
396 |
-
except ValueError:
|
397 |
-
pass
|
398 |
-
return 0.7
|
399 |
-
|
400 |
-
def extract_list_section(text: str, section: str) -> List[str]:
|
401 |
-
pattern = rf"{section}:\s*(.+?)(?=\n[A-Z_]+:|$)"
|
402 |
-
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
|
403 |
-
if match:
|
404 |
-
items_text = match.group(1).strip()
|
405 |
-
items = [item.strip().strip('-β’*').strip()
|
406 |
-
for item in re.split(r'\n|,', items_text)
|
407 |
-
if item.strip() and len(item.strip()) > 3]
|
408 |
-
return items[:3] # Limit to 3 items
|
409 |
-
return []
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
issues = extract_list_section(analysis_text, "ISSUES")
|
420 |
-
recommendations = extract_list_section(analysis_text, "RECOMMENDATIONS")
|
421 |
-
|
422 |
-
# Extract overall assessment
|
423 |
-
assessment_match = re.search(r"OVERALL_ASSESSMENT:\s*(.+?)(?=\n[A-Z_]+:|$)",
|
424 |
-
analysis_text, re.IGNORECASE | re.DOTALL)
|
425 |
-
overall_assessment = assessment_match.group(1).strip() if assessment_match else "Good marketing image potential"
|
426 |
-
|
427 |
-
# Calculate weighted overall score (emphasize marketing effectiveness)
|
428 |
-
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
|
429 |
-
|
430 |
-
# Determine pass/fail
|
431 |
-
passed = overall_score >= 0.7 and relevance_score >= 0.6
|
432 |
-
|
433 |
-
return {
|
434 |
-
"success": True,
|
435 |
-
"overall_score": round(overall_score, 2),
|
436 |
-
"quality_score": round(quality_score, 2),
|
437 |
-
"relevance_score": round(relevance_score, 2),
|
438 |
-
"marketing_score": round(marketing_score, 2),
|
439 |
-
"passed": passed,
|
440 |
-
"strengths": strengths,
|
441 |
-
"issues": issues,
|
442 |
-
"recommendations": recommendations,
|
443 |
-
"overall_assessment": overall_assessment,
|
444 |
-
"review_method": "AI-Powered (Gemini Vision)"
|
445 |
-
}
|
446 |
-
|
447 |
-
except Exception as e:
|
448 |
-
logger.error(f"Error parsing AI review: {e}")
|
449 |
-
return self._fallback_review(original_prompt)
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
recommendations = []
|
456 |
-
strengths = []
|
457 |
-
|
458 |
-
# Analyze prompt completeness
|
459 |
-
total_elements = sum(len(elements) for elements in prompt_elements.values())
|
460 |
-
|
461 |
-
# Base scoring
|
462 |
-
if total_elements >= 8:
|
463 |
-
base_score = 0.8
|
464 |
-
strengths.append("Comprehensive prompt with detailed specifications")
|
465 |
-
elif total_elements >= 5:
|
466 |
-
base_score = 0.7
|
467 |
-
strengths.append("Good prompt detail level")
|
468 |
-
elif total_elements >= 3:
|
469 |
-
base_score = 0.6
|
470 |
-
issues.append("Prompt could use more specific details")
|
471 |
-
else:
|
472 |
-
base_score = 0.5
|
473 |
-
issues.append("Prompt lacks sufficient detail for optimal results")
|
474 |
-
recommendations.append("Add more specific details about subjects, style, and setting")
|
475 |
-
|
476 |
-
# Check for marketing-specific elements
|
477 |
-
marketing_elements = prompt_elements.get('marketing', [])
|
478 |
-
if marketing_elements:
|
479 |
-
base_score += 0.1
|
480 |
-
strengths.append("Contains marketing-focused language")
|
481 |
-
else:
|
482 |
-
recommendations.append("Consider adding marketing-specific context")
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
if style_elements:
|
487 |
-
strengths.append(f"Clear style direction: {', '.join(style_elements[:2])}")
|
488 |
-
else:
|
489 |
-
issues.append("No clear artistic style specified")
|
490 |
-
recommendations.append("Specify desired artistic style (realistic, artistic, etc.)")
|
491 |
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
issues.append("Main subjects not clearly specified")
|
498 |
-
recommendations.append("Clearly define what should be the main focus")
|
499 |
|
500 |
-
|
501 |
-
|
502 |
-
relevance_score = base_score # Based on prompt completeness
|
503 |
-
marketing_score = base_score + (0.1 if marketing_elements else -0.1)
|
504 |
|
505 |
-
|
506 |
-
|
|
|
|
|
507 |
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
|
|
|
|
|
|
521 |
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
# Initialize agents
|
544 |
-
generator_agent = ImageGeneratorAgent()
|
545 |
-
reviewer_agent = ImageReviewerAgent()
|
546 |
-
|
547 |
-
def generate_marketing_image_with_review(
|
548 |
-
prompt: str,
|
549 |
-
style: str = "realistic",
|
550 |
-
quality_threshold: float = 0.8,
|
551 |
-
max_iterations: int = 2,
|
552 |
-
progress=gr.Progress(track_tqdm=True)
|
553 |
-
):
|
554 |
-
"""
|
555 |
-
Main workflow: Generate image and review it
|
556 |
-
"""
|
557 |
-
|
558 |
-
if not prompt.strip():
|
559 |
-
return None, "Please enter a prompt to generate an image.", "β No Prompt", ""
|
560 |
-
|
561 |
try:
|
562 |
-
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
generation_result = asyncio.run(generator_agent.generate_image(prompt, style))
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
|
|
|
571 |
|
572 |
-
|
573 |
-
|
|
|
|
|
574 |
|
575 |
-
|
576 |
-
|
577 |
-
image_b64 = image_data.split(',')[1]
|
578 |
-
image_bytes = base64.b64decode(image_b64)
|
579 |
-
display_image = Image.open(io.BytesIO(image_bytes))
|
580 |
-
else:
|
581 |
-
display_image = None
|
582 |
|
583 |
-
|
|
|
584 |
|
585 |
-
#
|
586 |
-
|
|
|
|
|
587 |
|
588 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
quality_info = f"""
|
594 |
-
## π― Review Results
|
595 |
|
596 |
-
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
|
|
|
|
|
|
|
|
603 |
|
604 |
-
|
605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
-
|
608 |
-
|
|
|
|
|
|
|
|
|
|
|
609 |
|
610 |
-
|
611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
|
613 |
-
|
614 |
-
|
|
|
|
|
|
|
|
|
615 |
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
-
|
627 |
-
|
628 |
-
-
|
629 |
-
|
630 |
-
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
-
|
|
|
|
|
|
|
|
|
|
|
648 |
|
649 |
-
|
650 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
|
652 |
-
|
653 |
-
.
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
color: #1f77b4;
|
660 |
-
margin-bottom: 2rem;
|
661 |
-
}
|
662 |
-
.quality-info {
|
663 |
-
background-color: #f8f9fa;
|
664 |
-
padding: 1rem;
|
665 |
-
border-radius: 0.5rem;
|
666 |
-
border-left: 4px solid #1f77b4;
|
667 |
-
font-family: monospace;
|
668 |
-
}
|
669 |
-
.status-approved { color: #28a745; font-weight: bold; }
|
670 |
-
.status-warning { color: #ffc107; font-weight: bold; }
|
671 |
-
.status-error { color: #dc3545; font-weight: bold; }
|
672 |
-
"""
|
673 |
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
gr.Markdown("## π Describe Your Marketing Image")
|
693 |
|
694 |
-
|
695 |
label="Marketing Image Description",
|
696 |
-
placeholder="
|
697 |
lines=4,
|
698 |
-
info="Be specific about subjects, setting,
|
699 |
)
|
700 |
|
701 |
with gr.Row():
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
|
|
708 |
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
)
|
717 |
|
718 |
-
with gr.
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
|
728 |
generate_btn = gr.Button(
|
729 |
-
"π Generate
|
730 |
variant="primary",
|
|
|
731 |
size="lg"
|
732 |
)
|
733 |
-
|
734 |
-
with gr.Column(scale=3):
|
735 |
-
# Output Section
|
736 |
-
gr.Markdown("## πΌοΈ Generated Image & Analysis")
|
737 |
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
max_lines=1
|
753 |
-
)
|
754 |
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
)
|
766 |
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
778 |
],
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
|
|
|
|
|
|
|
|
800 |
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
807 |
|
|
|
808 |
if __name__ == "__main__":
|
809 |
-
logger.info("Starting Marketing Image Generator with AI Review")
|
810 |
demo.launch(
|
811 |
server_name="0.0.0.0",
|
812 |
server_port=7860,
|
813 |
-
share=False,
|
814 |
show_error=True,
|
815 |
-
|
|
|
|
1 |
"""
|
2 |
+
Marketing Image Generator with Agent Review - Improved Gradio Version
|
3 |
|
4 |
+
This is an enhanced Gradio app for Hugging Face Spaces deployment with
|
5 |
+
better UI/UX design, cleaner layout, and improved functionality.
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
|
8 |
import gradio as gr
|
9 |
+
import requests
|
10 |
+
import json
|
11 |
+
import time
|
12 |
import base64
|
13 |
+
from PIL import Image, ImageDraw, ImageFont
|
14 |
import io
|
15 |
+
import traceback
|
16 |
+
import os
|
17 |
import re
|
18 |
import logging
|
19 |
import asyncio
|
20 |
+
import hashlib
|
21 |
from typing import Dict, Any, List, Optional
|
|
|
22 |
import google.generativeai as genai
|
23 |
from google import genai as genai_sdk
|
24 |
|
|
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
+
# Configuration for Hugging Face deployment
|
30 |
+
GOOGLE_SERVICE_ACCOUNT_JSON = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON", "")
|
31 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Initialize Google AI with service account JSON or API key
|
34 |
+
google_auth_configured = False
|
35 |
|
36 |
+
if GOOGLE_SERVICE_ACCOUNT_JSON:
|
37 |
+
try:
|
38 |
+
# Parse the JSON credentials
|
39 |
+
credentials_dict = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Create credentials from service account info
|
42 |
+
from google.oauth2 import service_account
|
43 |
+
credentials = service_account.Credentials.from_service_account_info(credentials_dict)
|
44 |
+
|
45 |
+
# Configure Google AI
|
46 |
+
genai.configure(credentials=credentials)
|
47 |
+
google_auth_configured = True
|
48 |
+
logger.info("β
Google Cloud service account configured")
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"β Error configuring Google Cloud service account: {str(e)}")
|
51 |
|
52 |
+
if not google_auth_configured and GOOGLE_API_KEY:
|
53 |
+
try:
|
54 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
55 |
+
google_auth_configured = True
|
56 |
+
logger.info("β
Google API key configured")
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"β Error configuring Google API key: {str(e)}")
|
59 |
|
60 |
+
if not google_auth_configured:
|
61 |
+
logger.warning("β οΈ No Google authentication configured - running in demo mode")
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
def create_enhanced_placeholder_image(prompt, style, aspect_ratio):
|
64 |
+
"""Create an enhanced placeholder image with better design"""
|
65 |
+
try:
|
66 |
+
# Set dimensions based on aspect ratio
|
67 |
+
if aspect_ratio == "16:9":
|
68 |
+
width, height = 1024, 576
|
69 |
+
elif aspect_ratio == "1:1":
|
70 |
+
width, height = 1024, 1024
|
71 |
+
elif aspect_ratio == "4:3":
|
72 |
+
width, height = 1024, 768
|
73 |
+
else: # 3:2
|
74 |
+
width, height = 1024, 683
|
75 |
+
|
76 |
+
# Generate deterministic but varied colors based on prompt
|
77 |
+
prompt_hash = int(hashlib.md5(prompt.encode()).hexdigest()[:8], 16)
|
78 |
+
|
79 |
+
# Style-based color schemes
|
80 |
+
color_schemes = {
|
81 |
+
"Professional": [(45, 55, 72), (74, 85, 104), (113, 128, 150)],
|
82 |
+
"Creative": [(236, 72, 153), (168, 85, 247), (59, 130, 246)],
|
83 |
+
"Minimalist": [(156, 163, 175), (209, 213, 219), (243, 244, 246)],
|
84 |
+
"Bold": [(239, 68, 68), (245, 101, 101), (252, 165, 165)],
|
85 |
+
"Elegant": [(91, 33, 182), (124, 58, 237), (167, 139, 250)],
|
86 |
+
"Playful": [(34, 197, 94), (74, 222, 128), (134, 239, 172)],
|
87 |
+
"Corporate": [(30, 58, 138), (30, 64, 175), (59, 130, 246)],
|
88 |
+
"Modern": [(17, 24, 39), (55, 65, 81), (107, 114, 128)]
|
89 |
+
}
|
90 |
+
|
91 |
+
colors = color_schemes.get(style, color_schemes["Professional"])
|
92 |
+
base_color = colors[prompt_hash % len(colors)]
|
93 |
+
|
94 |
+
# Create gradient background
|
95 |
+
img = Image.new('RGB', (width, height), base_color)
|
96 |
+
draw = ImageDraw.Draw(img)
|
97 |
+
|
98 |
+
# Add gradient effect
|
99 |
+
for i in range(height):
|
100 |
+
alpha = i / height
|
101 |
+
gradient_color = tuple(int(base_color[j] * (1 - alpha * 0.3)) for j in range(3))
|
102 |
+
draw.line([(0, i), (width, i)], fill=gradient_color)
|
103 |
+
|
104 |
+
# Add geometric elements for visual interest
|
105 |
+
overlay_color = tuple(min(255, c + 40) for c in base_color)
|
106 |
+
|
107 |
+
# Draw some decorative elements
|
108 |
+
for i in range(5):
|
109 |
+
x = (prompt_hash * (i + 1)) % (width - 100)
|
110 |
+
y = (prompt_hash * (i + 2)) % (height - 100)
|
111 |
+
size = 20 + (prompt_hash % 50)
|
112 |
+
draw.ellipse([x, y, x + size, y + size], fill=overlay_color)
|
113 |
+
|
114 |
+
# Add text overlay
|
115 |
try:
|
116 |
+
# Try to load a system font, fallback to default
|
117 |
+
try:
|
118 |
+
font_large = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 48)
|
119 |
+
font_medium = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 24)
|
120 |
+
font_small = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 18)
|
121 |
+
except:
|
122 |
+
font_large = ImageFont.load_default()
|
123 |
+
font_medium = ImageFont.load_default()
|
124 |
+
font_small = ImageFont.load_default()
|
125 |
+
|
126 |
+
# Add main title
|
127 |
+
title = f"Marketing Image"
|
128 |
+
title_bbox = draw.textbbox((0, 0), title, font=font_large)
|
129 |
+
title_width = title_bbox[2] - title_bbox[0]
|
130 |
+
title_x = (width - title_width) // 2
|
131 |
+
title_y = height // 3
|
132 |
+
|
133 |
+
# Add semi-transparent background for text
|
134 |
+
text_bg_color = (0, 0, 0, 128)
|
135 |
+
draw.rectangle([title_x - 20, title_y - 10, title_x + title_width + 20, title_y + 70],
|
136 |
+
fill=(0, 0, 0, 80))
|
137 |
+
|
138 |
+
draw.text((title_x, title_y), title, fill=(255, 255, 255), font=font_large)
|
139 |
+
|
140 |
+
# Add style info
|
141 |
+
style_text = f"Style: {style}"
|
142 |
+
style_bbox = draw.textbbox((0, 0), style_text, font=font_medium)
|
143 |
+
style_width = style_bbox[2] - style_bbox[0]
|
144 |
+
style_x = (width - style_width) // 2
|
145 |
+
draw.text((style_x, title_y + 60), style_text, fill=(255, 255, 255), font=font_medium)
|
146 |
+
|
147 |
+
# Add prompt preview
|
148 |
+
prompt_preview = prompt[:50] + "..." if len(prompt) > 50 else prompt
|
149 |
+
prompt_bbox = draw.textbbox((0, 0), prompt_preview, font=font_small)
|
150 |
+
prompt_width = prompt_bbox[2] - prompt_bbox[0]
|
151 |
+
prompt_x = (width - prompt_width) // 2
|
152 |
+
draw.text((prompt_x, title_y + 100), prompt_preview, fill=(200, 200, 200), font=font_small)
|
153 |
|
154 |
except Exception as e:
|
155 |
+
logger.warning(f"Could not add text overlay: {e}")
|
156 |
+
|
157 |
+
return img
|
158 |
+
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Error creating placeholder image: {e}")
|
161 |
+
# Fallback to simple colored rectangle
|
162 |
+
return Image.new('RGB', (1024, 576), color='#1f77b4')
|
163 |
+
|
164 |
+
def generate_image_with_review(prompt, style, aspect_ratio, num_images, quality_threshold=0.8):
|
165 |
+
"""Generate an image with automated review using Google APIs or enhanced placeholder"""
|
166 |
+
try:
|
167 |
+
logger.info(f"Generating image for prompt: {prompt[:50]}...")
|
168 |
+
|
169 |
+
# If Google auth is configured, try real API calls
|
170 |
+
if google_auth_configured:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
try:
|
172 |
+
# Enhance prompt first
|
173 |
+
enhanced_prompt = enhance_prompt_with_ai(prompt, style)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
# Try to generate with Google Imagen
|
176 |
+
real_image = generate_with_google_imagen(enhanced_prompt)
|
177 |
+
if real_image:
|
178 |
+
# Review the real image
|
179 |
+
review_result = review_image_with_ai(real_image, prompt, enhanced_prompt)
|
180 |
+
return {
|
181 |
+
"image": real_image,
|
182 |
+
"quality_score": review_result.get("quality_score", 0.85),
|
183 |
+
"review_comments": review_result.get("comments", "AI-generated image reviewed successfully"),
|
184 |
+
"status": "approved" if review_result.get("quality_score", 0.85) >= quality_threshold else "needs_improvement",
|
185 |
+
"prompt": prompt,
|
186 |
+
"enhanced_prompt": enhanced_prompt,
|
187 |
+
"style": style,
|
188 |
+
"aspect_ratio": aspect_ratio,
|
189 |
+
"method": "Google Imagen + AI Review",
|
190 |
+
"timestamp": time.time()
|
191 |
+
}
|
192 |
except Exception as e:
|
193 |
+
logger.warning(f"Google API generation failed: {e}")
|
194 |
+
|
195 |
+
# Fallback to enhanced placeholder
|
196 |
+
placeholder_image = create_enhanced_placeholder_image(prompt, style, aspect_ratio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
# Simulate quality analysis based on prompt quality
|
199 |
+
quality_score = analyze_prompt_quality(prompt, style)
|
|
|
|
|
|
|
|
|
200 |
|
201 |
return {
|
202 |
+
"image": placeholder_image,
|
203 |
+
"quality_score": quality_score,
|
204 |
+
"review_comments": generate_review_comments(prompt, style, quality_score),
|
205 |
+
"status": "approved" if quality_score >= quality_threshold else "needs_improvement",
|
206 |
+
"prompt": prompt,
|
207 |
+
"enhanced_prompt": enhance_prompt_basic(prompt, style),
|
208 |
+
"style": style,
|
209 |
+
"aspect_ratio": aspect_ratio,
|
210 |
+
"method": "Enhanced Demo Mode",
|
211 |
+
"timestamp": time.time()
|
212 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
except Exception as e:
|
215 |
+
logger.error(f"Error in image generation: {str(e)}")
|
216 |
+
return None
|
217 |
+
|
218 |
+
def enhance_prompt_with_ai(prompt, style):
|
219 |
+
"""Enhance prompt using AI if available"""
|
220 |
+
if not google_auth_configured:
|
221 |
+
return enhance_prompt_basic(prompt, style)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
try:
|
224 |
+
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
225 |
+
enhancement_prompt = f"""
|
226 |
+
Enhance this marketing image prompt for optimal results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
Original: "{prompt}"
|
229 |
+
Style: "{style}"
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
Make it more specific for marketing image generation. Add details about:
|
232 |
+
- Composition and framing
|
233 |
+
- Lighting and mood
|
234 |
+
- Professional quality indicators
|
235 |
+
- Brand-appropriate elements
|
|
|
|
|
236 |
|
237 |
+
Keep it under 150 words. Return only the enhanced prompt.
|
238 |
+
"""
|
|
|
|
|
239 |
|
240 |
+
response = model.generate_content(enhancement_prompt)
|
241 |
+
enhanced = response.text.strip()
|
242 |
+
logger.info(f"AI-enhanced prompt: {enhanced[:100]}...")
|
243 |
+
return enhanced
|
244 |
|
245 |
+
except Exception as e:
|
246 |
+
logger.warning(f"AI prompt enhancement failed: {e}")
|
247 |
+
return enhance_prompt_basic(prompt, style)
|
248 |
+
|
249 |
+
def enhance_prompt_basic(prompt, style):
|
250 |
+
"""Basic prompt enhancement without AI"""
|
251 |
+
style_enhancers = {
|
252 |
+
"Professional": "professional photography, corporate setting, high quality, clean composition",
|
253 |
+
"Creative": "creative composition, artistic flair, innovative design, vibrant colors",
|
254 |
+
"Minimalist": "clean minimal design, simple composition, white space, elegant",
|
255 |
+
"Bold": "bold colors, strong contrast, dynamic composition, eye-catching",
|
256 |
+
"Elegant": "sophisticated, refined, luxury feel, premium quality",
|
257 |
+
"Playful": "fun, engaging, colorful, approachable, friendly",
|
258 |
+
"Corporate": "business professional, corporate branding, trustworthy, authoritative",
|
259 |
+
"Modern": "contemporary design, sleek, cutting-edge, stylish"
|
260 |
+
}
|
261 |
|
262 |
+
enhancer = style_enhancers.get(style, "high quality, professional")
|
263 |
+
return f"{prompt}, {enhancer}, marketing quality, 4K resolution, sharp focus"
|
264 |
+
|
265 |
+
def generate_with_google_imagen(enhanced_prompt):
|
266 |
+
"""Generate image using Google Imagen API"""
|
267 |
+
try:
|
268 |
+
if GOOGLE_SERVICE_ACCOUNT_JSON:
|
269 |
+
client = genai_sdk.Client()
|
270 |
+
else:
|
271 |
+
client = genai_sdk.Client(api_key=GOOGLE_API_KEY)
|
272 |
+
|
273 |
+
result = client.models.generate_images(
|
274 |
+
model="imagen-3.0-generate-002",
|
275 |
+
prompt=enhanced_prompt,
|
276 |
+
config={
|
277 |
+
"number_of_images": 1,
|
278 |
+
"output_mime_type": "image/png"
|
279 |
+
}
|
280 |
+
)
|
281 |
|
282 |
+
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
|
283 |
+
generated_image = result.generated_images[0]
|
284 |
+
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
|
285 |
+
image_bytes = generated_image.image.image_bytes
|
286 |
+
image = Image.open(io.BytesIO(image_bytes))
|
287 |
+
logger.info("Successfully generated real image with Google Imagen!")
|
288 |
+
return image
|
289 |
+
|
290 |
+
return None
|
291 |
+
|
292 |
+
except Exception as e:
|
293 |
+
logger.warning(f"Google Imagen generation failed: {e}")
|
294 |
+
return None
|
295 |
|
296 |
+
def review_image_with_ai(image, original_prompt, enhanced_prompt):
|
297 |
+
"""Review image using Google Gemini Vision"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
try:
|
299 |
+
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
300 |
|
301 |
+
analysis_prompt = f"""
|
302 |
+
Analyze this marketing image generated from: "{original_prompt}"
|
|
|
303 |
|
304 |
+
Rate the image on a scale of 0.0 to 1.0 for:
|
305 |
+
1. Technical quality (clarity, composition, lighting)
|
306 |
+
2. Marketing effectiveness (professional appeal, brand suitability)
|
307 |
+
3. Prompt matching (how well it matches the request)
|
308 |
|
309 |
+
Provide:
|
310 |
+
- Overall quality score (0.0-1.0)
|
311 |
+
- Brief review comments for marketing use
|
312 |
+
- Specific strengths and areas for improvement
|
313 |
|
314 |
+
Format: Quality Score: X.XX | Comments: [your analysis]
|
315 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
response = model.generate_content([analysis_prompt, image])
|
318 |
+
analysis = response.text
|
319 |
|
320 |
+
# Parse the response
|
321 |
+
import re
|
322 |
+
score_match = re.search(r'Quality Score:\s*([\d.]+)', analysis)
|
323 |
+
quality_score = float(score_match.group(1)) if score_match else 0.85
|
324 |
|
325 |
+
comments_match = re.search(r'Comments:\s*(.+)', analysis, re.DOTALL)
|
326 |
+
comments = comments_match.group(1).strip() if comments_match else analysis
|
327 |
+
|
328 |
+
return {
|
329 |
+
"quality_score": min(1.0, max(0.0, quality_score)),
|
330 |
+
"comments": comments[:200] + "..." if len(comments) > 200 else comments
|
331 |
+
}
|
332 |
|
333 |
+
except Exception as e:
|
334 |
+
logger.warning(f"AI image review failed: {e}")
|
335 |
+
return {"quality_score": 0.75, "comments": "Image generated successfully"}
|
|
|
|
|
336 |
|
337 |
+
def analyze_prompt_quality(prompt, style):
|
338 |
+
"""Analyze prompt quality and return a score"""
|
339 |
+
score = 0.5 # Base score
|
340 |
+
|
341 |
+
# Length analysis
|
342 |
+
word_count = len(prompt.split())
|
343 |
+
if 10 <= word_count <= 50:
|
344 |
+
score += 0.2
|
345 |
+
elif word_count > 5:
|
346 |
+
score += 0.1
|
347 |
+
|
348 |
+
# Content analysis
|
349 |
+
marketing_keywords = ['marketing', 'professional', 'brand', 'corporate', 'business', 'campaign']
|
350 |
+
visual_keywords = ['lighting', 'composition', 'color', 'background', 'style']
|
351 |
+
descriptive_keywords = ['modern', 'clean', 'elegant', 'bold', 'creative', 'minimalist']
|
352 |
+
|
353 |
+
for keyword_list in [marketing_keywords, visual_keywords, descriptive_keywords]:
|
354 |
+
if any(keyword in prompt.lower() for keyword in keyword_list):
|
355 |
+
score += 0.1
|
356 |
+
|
357 |
+
# Style alignment
|
358 |
+
if style.lower() in prompt.lower():
|
359 |
+
score += 0.1
|
360 |
+
|
361 |
+
return min(1.0, score)
|
362 |
|
363 |
+
def generate_review_comments(prompt, style, quality_score):
|
364 |
+
"""Generate contextual review comments"""
|
365 |
+
if quality_score >= 0.8:
|
366 |
+
return f"Excellent marketing image potential. The {style.lower()} style aligns well with the prompt requirements. Ready for professional use."
|
367 |
+
elif quality_score >= 0.6:
|
368 |
+
return f"Good marketing image with {style.lower()} styling. Consider adding more specific details for enhanced results."
|
369 |
+
else:
|
370 |
+
return f"Basic image generated. For better marketing results, try adding more descriptive details and specific {style.lower()} elements."
|
371 |
|
372 |
+
def process_generation(prompt, style, aspect_ratio, num_images, quality_threshold):
|
373 |
+
"""Process image generation and return results for Gradio"""
|
374 |
+
if not prompt.strip():
|
375 |
+
return None, "β Please enter a prompt", "Error", "Error", "Please provide a description for your marketing image."
|
376 |
+
|
377 |
+
try:
|
378 |
+
result = generate_image_with_review(prompt, style, aspect_ratio, num_images, quality_threshold)
|
379 |
+
|
380 |
+
if result:
|
381 |
+
status_emoji = "β
" if result["status"] == "approved" else "β οΈ"
|
382 |
+
return (
|
383 |
+
result["image"],
|
384 |
+
f"π― {result['quality_score']:.2f}/1.0",
|
385 |
+
f"{status_emoji} {result['status'].replace('_', ' ').title()}",
|
386 |
+
f"π¨ {result['style']} | π {result['aspect_ratio']} | β‘ {result['method']}",
|
387 |
+
f"π¬ {result['review_comments']}"
|
388 |
+
)
|
389 |
+
else:
|
390 |
+
return None, "β Generation failed", "Error", "Error", "An error occurred during image generation. Please try again."
|
391 |
+
|
392 |
+
except Exception as e:
|
393 |
+
logger.error(f"Process generation error: {str(e)}")
|
394 |
+
return None, "β System error", "Error", "Error", f"System error: {str(e)}"
|
395 |
|
396 |
+
# Custom CSS for enhanced styling
|
397 |
+
custom_css = """
|
398 |
+
.gradio-container {
|
399 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
|
400 |
+
max-width: 1400px !important;
|
401 |
+
margin: 0 auto !important;
|
402 |
+
}
|
403 |
|
404 |
+
.main-header {
|
405 |
+
text-align: center;
|
406 |
+
padding: 2rem 1rem;
|
407 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
408 |
+
color: white;
|
409 |
+
border-radius: 16px;
|
410 |
+
margin-bottom: 2rem;
|
411 |
+
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.2);
|
412 |
+
}
|
413 |
|
414 |
+
.main-header h1 {
|
415 |
+
font-size: 2.5rem;
|
416 |
+
font-weight: 700;
|
417 |
+
margin: 0 0 0.5rem 0;
|
418 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
419 |
+
}
|
420 |
|
421 |
+
.main-header p {
|
422 |
+
font-size: 1.2rem;
|
423 |
+
opacity: 0.95;
|
424 |
+
margin: 0;
|
425 |
+
font-weight: 300;
|
426 |
+
}
|
427 |
+
|
428 |
+
.status-indicator {
|
429 |
+
padding: 1rem;
|
430 |
+
border-radius: 12px;
|
431 |
+
margin-bottom: 1.5rem;
|
432 |
+
display: flex;
|
433 |
+
align-items: center;
|
434 |
+
gap: 0.75rem;
|
435 |
+
font-weight: 600;
|
436 |
+
}
|
437 |
+
|
438 |
+
.status-success {
|
439 |
+
background: linear-gradient(135deg, #d1fae5 0%, #a7f3d0 100%);
|
440 |
+
border: 2px solid #10b981;
|
441 |
+
color: #065f46;
|
442 |
+
}
|
443 |
+
|
444 |
+
.status-warning {
|
445 |
+
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
|
446 |
+
border: 2px solid #f59e0b;
|
447 |
+
color: #92400e;
|
448 |
+
}
|
449 |
+
|
450 |
+
.input-section {
|
451 |
+
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%);
|
452 |
+
border: 2px solid #e2e8f0;
|
453 |
+
border-radius: 16px;
|
454 |
+
padding: 2rem;
|
455 |
+
margin-bottom: 2rem;
|
456 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
457 |
+
}
|
458 |
+
|
459 |
+
.output-section {
|
460 |
+
background: white;
|
461 |
+
border: 2px solid #e2e8f0;
|
462 |
+
border-radius: 16px;
|
463 |
+
padding: 2rem;
|
464 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
465 |
+
}
|
466 |
+
|
467 |
+
.generate-btn {
|
468 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
469 |
+
border: none !important;
|
470 |
+
color: white !important;
|
471 |
+
font-weight: 600 !important;
|
472 |
+
padding: 1rem 2rem !important;
|
473 |
+
border-radius: 12px !important;
|
474 |
+
font-size: 1.1rem !important;
|
475 |
+
transition: all 0.3s ease !important;
|
476 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
|
477 |
+
}
|
478 |
+
|
479 |
+
.generate-btn:hover {
|
480 |
+
transform: translateY(-2px) !important;
|
481 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
|
482 |
+
}
|
483 |
+
|
484 |
+
.metric-display {
|
485 |
+
background: #f8fafc;
|
486 |
+
border: 1px solid #e2e8f0;
|
487 |
+
border-radius: 12px;
|
488 |
+
padding: 1rem;
|
489 |
+
text-align: center;
|
490 |
+
font-weight: 600;
|
491 |
+
}
|
492 |
+
|
493 |
+
.info-section {
|
494 |
+
background: linear-gradient(135deg, #fafafa 0%, #f4f4f5 100%);
|
495 |
+
padding: 1.5rem;
|
496 |
+
border-radius: 12px;
|
497 |
+
border: 1px solid #e4e4e7;
|
498 |
+
}
|
499 |
|
500 |
+
.info-section h3 {
|
501 |
+
color: #374151;
|
502 |
+
font-size: 1.1rem;
|
503 |
+
margin-bottom: 1rem;
|
504 |
+
font-weight: 600;
|
505 |
+
}
|
506 |
|
507 |
+
.info-section ul {
|
508 |
+
margin: 0;
|
509 |
+
padding-left: 1.2rem;
|
510 |
+
}
|
511 |
+
|
512 |
+
.info-section li {
|
513 |
+
margin-bottom: 0.5rem;
|
514 |
+
color: #6b7280;
|
515 |
+
line-height: 1.5;
|
516 |
+
}
|
517 |
+
|
518 |
+
.footer-info {
|
519 |
+
text-align: center;
|
520 |
+
color: #6b7280;
|
521 |
+
font-size: 0.9rem;
|
522 |
+
margin-top: 2rem;
|
523 |
+
padding: 1rem;
|
524 |
+
background: #f9fafb;
|
525 |
+
border-radius: 8px;
|
526 |
+
}
|
527 |
+
"""
|
528 |
+
|
529 |
+
# Create the enhanced Gradio interface
|
530 |
+
with gr.Blocks(
|
531 |
+
title="Marketing Image Generator with AI Review",
|
532 |
+
theme=gr.themes.Soft(
|
533 |
+
primary_hue="blue",
|
534 |
+
secondary_hue="purple",
|
535 |
+
neutral_hue="slate"
|
536 |
+
),
|
537 |
+
css=custom_css
|
538 |
+
) as demo:
|
539 |
|
540 |
+
# Main header
|
541 |
+
gr.HTML("""
|
542 |
+
<div class="main-header">
|
543 |
+
<h1>π¨ Marketing Image Generator with AI Review</h1>
|
544 |
+
<p>Create professional marketing images with automated quality assurance</p>
|
545 |
+
</div>
|
546 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
|
548 |
+
# Status indicator
|
549 |
+
if google_auth_configured:
|
550 |
+
gr.HTML("""
|
551 |
+
<div class="status-indicator status-success">
|
552 |
+
<span style="font-size: 1.2rem;">β
</span>
|
553 |
+
<div>
|
554 |
+
<strong>Ready for Production</strong><br>
|
555 |
+
<small>Google Cloud AI services are configured and active</small>
|
556 |
+
</div>
|
557 |
+
</div>
|
558 |
+
""")
|
559 |
+
else:
|
560 |
+
gr.HTML("""
|
561 |
+
<div class="status-indicator status-warning">
|
562 |
+
<span style="font-size: 1.2rem;">β οΈ</span>
|
563 |
+
<div>
|
564 |
+
<strong>Demo Mode Active</strong><br>
|
565 |
+
<small>Enhanced placeholders will be generated. Configure Google Cloud for full AI capabilities.</small>
|
566 |
+
</div>
|
567 |
+
</div>
|
568 |
+
""")
|
569 |
+
|
570 |
+
with gr.Row():
|
571 |
+
with gr.Column(scale=3):
|
572 |
+
# Input section
|
573 |
+
with gr.Group():
|
574 |
+
gr.HTML('<div class="input-section">')
|
575 |
+
|
576 |
gr.Markdown("## π Describe Your Marketing Image")
|
577 |
|
578 |
+
prompt_input = gr.Textbox(
|
579 |
label="Marketing Image Description",
|
580 |
+
placeholder="A professional team of diverse colleagues collaborating around a modern conference table in a bright office space, clean corporate design, high-quality lighting, suitable for website hero section...",
|
581 |
lines=4,
|
582 |
+
info="π‘ Be specific about subjects, setting, mood, and intended marketing use for best results."
|
583 |
)
|
584 |
|
585 |
with gr.Row():
|
586 |
+
with gr.Column():
|
587 |
+
style_dropdown = gr.Dropdown(
|
588 |
+
choices=["Professional", "Creative", "Minimalist", "Bold", "Elegant", "Playful", "Corporate", "Modern"],
|
589 |
+
value="Professional",
|
590 |
+
label="π¨ Visual Style",
|
591 |
+
info="Choose the style that matches your brand identity"
|
592 |
+
)
|
593 |
|
594 |
+
with gr.Column():
|
595 |
+
aspect_ratio = gr.Dropdown(
|
596 |
+
choices=["16:9", "1:1", "4:3", "3:2"],
|
597 |
+
value="16:9",
|
598 |
+
label="π Aspect Ratio",
|
599 |
+
info="Select dimensions for your use case"
|
600 |
+
)
|
|
|
601 |
|
602 |
+
with gr.Row():
|
603 |
+
with gr.Column():
|
604 |
+
num_images = gr.Slider(
|
605 |
+
minimum=1,
|
606 |
+
maximum=1, # Simplified for demo
|
607 |
+
value=1,
|
608 |
+
step=1,
|
609 |
+
label="πΌοΈ Images to Generate",
|
610 |
+
info="Number of variations"
|
611 |
+
)
|
612 |
+
|
613 |
+
with gr.Column():
|
614 |
+
quality_slider = gr.Slider(
|
615 |
+
minimum=0.5,
|
616 |
+
maximum=1.0,
|
617 |
+
value=0.8,
|
618 |
+
step=0.05,
|
619 |
+
label="π― Quality Threshold",
|
620 |
+
info="Minimum quality score for approval"
|
621 |
+
)
|
622 |
|
623 |
generate_btn = gr.Button(
|
624 |
+
"π Generate Marketing Image",
|
625 |
variant="primary",
|
626 |
+
elem_classes="generate-btn",
|
627 |
size="lg"
|
628 |
)
|
|
|
|
|
|
|
|
|
629 |
|
630 |
+
gr.HTML('</div>')
|
631 |
+
|
632 |
+
with gr.Column(scale=1):
|
633 |
+
# Info panel
|
634 |
+
gr.HTML("""
|
635 |
+
<div class="info-section">
|
636 |
+
<h3>π How It Works</h3>
|
637 |
+
<ul>
|
638 |
+
<li><strong>Describe:</strong> Detail your vision with specific marketing context</li>
|
639 |
+
<li><strong>Style:</strong> Choose from professional design styles</li>
|
640 |
+
<li><strong>Generate:</strong> AI creates optimized marketing images</li>
|
641 |
+
<li><strong>Review:</strong> Automated quality analysis and feedback</li>
|
642 |
+
<li><strong>Use:</strong> Download high-quality results</li>
|
643 |
+
</ul>
|
|
|
|
|
644 |
|
645 |
+
<h3>π‘ Tips for Best Results</h3>
|
646 |
+
<ul>
|
647 |
+
<li>Include target audience and use case</li>
|
648 |
+
<li>Specify colors, mood, and setting</li>
|
649 |
+
<li>Mention brand elements or style preferences</li>
|
650 |
+
<li>Be specific about composition and framing</li>
|
651 |
+
</ul>
|
652 |
+
</div>
|
653 |
+
""")
|
654 |
+
|
655 |
+
# Output section
|
656 |
+
gr.HTML('<div class="output-section">')
|
657 |
+
|
658 |
+
gr.Markdown("## πΌοΈ Generated Marketing Image & Analysis")
|
659 |
+
|
660 |
+
with gr.Row():
|
661 |
+
with gr.Column(scale=2):
|
662 |
+
image_output = gr.Image(
|
663 |
+
label="Generated Marketing Image",
|
664 |
+
height=400,
|
665 |
+
show_label=True,
|
666 |
+
show_download_button=True
|
667 |
)
|
668 |
|
669 |
+
with gr.Column(scale=1):
|
670 |
+
gr.Markdown("### π Quality Metrics")
|
671 |
+
|
672 |
+
quality_output = gr.Textbox(
|
673 |
+
label="Quality Score",
|
674 |
+
interactive=False,
|
675 |
+
elem_classes="metric-display"
|
676 |
+
)
|
677 |
+
|
678 |
+
status_output = gr.Textbox(
|
679 |
+
label="Review Status",
|
680 |
+
interactive=False,
|
681 |
+
elem_classes="metric-display"
|
682 |
+
)
|
683 |
+
|
684 |
+
style_output = gr.Textbox(
|
685 |
+
label="Generation Details",
|
686 |
+
interactive=False,
|
687 |
+
elem_classes="metric-display"
|
688 |
+
)
|
689 |
+
|
690 |
+
review_output = gr.Textbox(
|
691 |
+
label="π AI Quality Review & Recommendations",
|
692 |
+
lines=3,
|
693 |
+
interactive=False,
|
694 |
+
info="Detailed feedback and suggestions from our AI review system"
|
695 |
+
)
|
696 |
+
|
697 |
+
gr.HTML('</div>')
|
698 |
+
|
699 |
+
# Examples section
|
700 |
+
gr.Markdown("## π‘ Example Prompts")
|
701 |
+
|
702 |
+
examples = gr.Examples(
|
703 |
+
examples=[
|
704 |
+
[
|
705 |
+
"A diverse team of professionals collaborating around a modern conference table in a bright, contemporary office space with large windows and natural lighting, suitable for corporate website hero section",
|
706 |
+
"Professional",
|
707 |
+
"16:9",
|
708 |
+
1,
|
709 |
+
0.8
|
710 |
],
|
711 |
+
[
|
712 |
+
"A sleek product showcase featuring a smartphone floating above a clean white surface with dramatic studio lighting and subtle reflections, perfect for e-commerce marketing",
|
713 |
+
"Minimalist",
|
714 |
+
"1:1",
|
715 |
+
1,
|
716 |
+
0.8
|
717 |
+
],
|
718 |
+
[
|
719 |
+
"A friendly customer service representative wearing a headset, smiling warmly while helping clients in a modern call center environment with soft lighting",
|
720 |
+
"Corporate",
|
721 |
+
"4:3",
|
722 |
+
1,
|
723 |
+
0.8
|
724 |
+
],
|
725 |
+
[
|
726 |
+
"An inspiring workspace setup with a laptop, coffee cup, and plants on a wooden desk, warm natural lighting streaming through a window, perfect for productivity app marketing",
|
727 |
+
"Modern",
|
728 |
+
"16:9",
|
729 |
+
1,
|
730 |
+
0.8
|
731 |
+
]
|
732 |
+
],
|
733 |
+
inputs=[prompt_input, style_dropdown, aspect_ratio, num_images, quality_slider],
|
734 |
+
label="Click any example to try it out!"
|
735 |
+
)
|
736 |
|
737 |
+
# Footer
|
738 |
+
gr.HTML("""
|
739 |
+
<div class="footer-info">
|
740 |
+
<strong>Marketing Image Generator with AI Review</strong><br>
|
741 |
+
Powered by Google Imagen3 & Gemini Vision | Built for Professional Marketing Teams<br>
|
742 |
+
<em>Transform your marketing vision into professional-quality images with AI-powered review</em>
|
743 |
+
</div>
|
744 |
+
""")
|
745 |
+
|
746 |
+
# Connect the generation function
|
747 |
+
generate_btn.click(
|
748 |
+
fn=process_generation,
|
749 |
+
inputs=[prompt_input, style_dropdown, aspect_ratio, num_images, quality_slider],
|
750 |
+
outputs=[image_output, quality_output, status_output, style_output, review_output],
|
751 |
+
show_progress=True
|
752 |
+
)
|
753 |
|
754 |
+
# Launch configuration
|
755 |
if __name__ == "__main__":
|
|
|
756 |
demo.launch(
|
757 |
server_name="0.0.0.0",
|
758 |
server_port=7860,
|
|
|
759 |
show_error=True,
|
760 |
+
share=False
|
761 |
+
)
|