Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,815 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import random
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
MAX_IMAGE_SIZE = 1024
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Marketing Image Generator with Agent Review - Complete Gradio App
|
|
|
3 |
|
4 |
+
Integrated single-file application that includes:
|
5 |
+
1. Image Generator Agent (using Google Imagen)
|
6 |
+
2. Image Reviewer Agent (using Google Gemini Vision)
|
7 |
+
3. Gradio UI for Hugging Face deployment
|
8 |
|
9 |
+
This combines the functionality of the entire marketing image generation system
|
10 |
+
into one deployable file for Hugging Face Spaces.
|
11 |
+
"""
|
12 |
|
13 |
+
import gradio as gr
|
14 |
+
import os
|
15 |
+
import base64
|
16 |
+
import io
|
17 |
+
import time
|
18 |
+
import re
|
19 |
+
import logging
|
20 |
+
import asyncio
|
21 |
+
from typing import Dict, Any, List, Optional
|
22 |
+
from PIL import Image
|
23 |
+
import google.generativeai as genai
|
24 |
+
from google import genai as genai_sdk
|
25 |
|
26 |
+
# Configure logging
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
|
30 |
+
# Configuration
|
31 |
MAX_IMAGE_SIZE = 1024
|
32 |
+
DEFAULT_QUALITY_THRESHOLD = 0.8
|
33 |
|
34 |
+
# Initialize Google API with multiple authentication methods
|
35 |
+
def setup_google_auth():
|
36 |
+
"""Setup Google authentication with multiple fallback options"""
|
37 |
+
|
38 |
+
# Method 1: Try service account JSON (for Google Cloud APIs)
|
39 |
+
gcp_service_account = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON")
|
40 |
+
if gcp_service_account:
|
41 |
+
try:
|
42 |
+
import json
|
43 |
+
from google.oauth2 import service_account
|
44 |
+
import google.auth
|
45 |
+
|
46 |
+
# Parse the service account JSON
|
47 |
+
service_account_info = json.loads(gcp_service_account)
|
48 |
+
credentials = service_account.Credentials.from_service_account_info(service_account_info)
|
49 |
+
|
50 |
+
# Set up for Google Cloud APIs
|
51 |
+
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'temp_service_account.json'
|
52 |
+
with open('temp_service_account.json', 'w') as f:
|
53 |
+
json.dump(service_account_info, f)
|
54 |
+
|
55 |
+
logger.info("Google Cloud service account configured successfully")
|
56 |
+
return "service_account"
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
logger.warning(f"Failed to setup service account: {e}")
|
60 |
+
|
61 |
+
# Method 2: Try API keys (for Google AI Studio)
|
62 |
+
api_keys = [
|
63 |
+
os.getenv("GOOGLE_API_KEY"),
|
64 |
+
os.getenv("GOOGLE_AI_STUDIO_API_KEY"),
|
65 |
+
os.getenv("GCP_KEY_1"),
|
66 |
+
os.getenv("GCP_KEY_2"),
|
67 |
+
os.getenv("GCP_KEY_3")
|
68 |
+
]
|
69 |
+
|
70 |
+
google_api_key = next((key for key in api_keys if key), None)
|
71 |
+
if google_api_key:
|
72 |
+
try:
|
73 |
+
genai.configure(api_key=google_api_key)
|
74 |
+
logger.info("Google AI Studio API key configured successfully")
|
75 |
+
return google_api_key
|
76 |
+
except Exception as e:
|
77 |
+
logger.warning(f"Failed to configure API key: {e}")
|
78 |
+
|
79 |
+
logger.warning("No Google authentication found - using fallback mode")
|
80 |
+
return None
|
81 |
|
82 |
+
# Setup authentication
|
83 |
+
GOOGLE_AUTH = setup_google_auth()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# ====== IMAGE GENERATOR AGENT ======
|
|
|
|
|
86 |
|
87 |
+
class ImageGeneratorAgent:
|
88 |
+
"""Agent responsible for generating marketing images using Google Imagen"""
|
89 |
+
|
90 |
+
def __init__(self):
|
91 |
+
self.name = "image_generator_agent"
|
92 |
+
|
93 |
+
async def enhance_prompt(self, prompt: str, style: str) -> str:
|
94 |
+
"""Enhance user prompt for better image generation"""
|
95 |
+
if not GOOGLE_AUTH:
|
96 |
+
# Basic enhancement without AI
|
97 |
+
style_enhancers = {
|
98 |
+
"realistic": "photorealistic, high detail, professional photography, marketing quality",
|
99 |
+
"artistic": "artistic masterpiece, creative composition, marketing appeal",
|
100 |
+
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
|
101 |
+
"illustration": "professional illustration, clean design, marketing material",
|
102 |
+
"photographic": "professional photograph, high quality, studio lighting, marketing shot"
|
103 |
+
}
|
104 |
+
enhancer = style_enhancers.get(style, "high quality, professional")
|
105 |
+
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
|
106 |
+
|
107 |
+
try:
|
108 |
+
enhancement_prompt = f"""
|
109 |
+
You are an expert prompt engineer for AI image generation. Enhance this marketing image prompt for optimal results with Google Imagen.
|
110 |
|
111 |
+
Original prompt: "{prompt}"
|
112 |
+
Desired style: "{style}"
|
113 |
|
114 |
+
Create an enhanced version that:
|
115 |
+
1. Maintains the core marketing intent
|
116 |
+
2. Adds specific technical details for image quality
|
117 |
+
3. Includes appropriate style descriptors for "{style}" style
|
118 |
+
4. Adds professional marketing composition guidance
|
119 |
+
5. Keeps the enhanced prompt under 150 words
|
120 |
|
121 |
+
Return only the enhanced prompt without explanation.
|
122 |
+
"""
|
123 |
+
|
124 |
+
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
125 |
+
response = model.generate_content(enhancement_prompt)
|
126 |
+
enhanced = response.text.strip()
|
127 |
+
|
128 |
+
logger.info(f"Enhanced prompt: {enhanced[:100]}...")
|
129 |
+
return enhanced
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
logger.warning(f"Failed to enhance prompt with AI: {e}")
|
133 |
+
style_enhancers = {
|
134 |
+
"realistic": "photorealistic, high detail, professional photography, marketing quality",
|
135 |
+
"artistic": "artistic masterpiece, creative composition, marketing appeal",
|
136 |
+
"cartoon": "cartoon style, vibrant colors, playful, marketing friendly",
|
137 |
+
"illustration": "professional illustration, clean design, marketing material",
|
138 |
+
"photographic": "professional photograph, high quality, studio lighting"
|
139 |
+
}
|
140 |
+
enhancer = style_enhancers.get(style, "high quality, professional")
|
141 |
+
return f"{prompt}, {enhancer}, 4K resolution, sharp focus"
|
142 |
+
|
143 |
+
async def generate_image(self, prompt: str, style: str = "realistic") -> Dict[str, Any]:
|
144 |
+
"""Generate image using Google Imagen"""
|
145 |
+
try:
|
146 |
+
# Enhance the prompt first
|
147 |
+
enhanced_prompt = await self.enhance_prompt(prompt, style)
|
148 |
+
|
149 |
+
# Try Google Imagen API
|
150 |
+
if GOOGLE_AUTH:
|
151 |
+
image_data = await self._generate_with_imagen(enhanced_prompt)
|
152 |
+
if image_data:
|
153 |
+
return {
|
154 |
+
"success": True,
|
155 |
+
"image_data": image_data,
|
156 |
+
"enhanced_prompt": enhanced_prompt,
|
157 |
+
"method": "Google Imagen"
|
158 |
+
}
|
159 |
+
|
160 |
+
# Fallback to placeholder for demo
|
161 |
+
return await self._generate_fallback(enhanced_prompt, style)
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
logger.error(f"Image generation failed: {e}")
|
165 |
+
return {
|
166 |
+
"success": False,
|
167 |
+
"error": str(e),
|
168 |
+
"enhanced_prompt": prompt
|
169 |
+
}
|
170 |
+
|
171 |
+
async def _generate_with_imagen(self, enhanced_prompt: str) -> Optional[str]:
|
172 |
+
"""Generate image using Google Imagen API"""
|
173 |
+
try:
|
174 |
+
# Handle different authentication methods
|
175 |
+
if GOOGLE_AUTH == "service_account":
|
176 |
+
# Use service account authentication
|
177 |
+
client = genai_sdk.Client() # Will use GOOGLE_APPLICATION_CREDENTIALS
|
178 |
+
else:
|
179 |
+
# Use API key authentication
|
180 |
+
client = genai_sdk.Client(api_key=GOOGLE_AUTH)
|
181 |
+
|
182 |
+
result = client.models.generate_images(
|
183 |
+
model="imagen-3.0-generate-002",
|
184 |
+
prompt=enhanced_prompt,
|
185 |
+
config={
|
186 |
+
"number_of_images": 1,
|
187 |
+
"output_mime_type": "image/png"
|
188 |
+
}
|
189 |
)
|
190 |
+
|
191 |
+
if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0:
|
192 |
+
generated_image = result.generated_images[0]
|
193 |
+
|
194 |
+
if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'):
|
195 |
+
image_bytes = generated_image.image.image_bytes
|
196 |
+
base64_image = base64.b64encode(image_bytes).decode('utf-8')
|
197 |
+
return f"data:image/png;base64,{base64_image}"
|
198 |
+
|
199 |
+
return None
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
logger.warning(f"Imagen API failed: {e}")
|
203 |
+
return None
|
204 |
+
|
205 |
+
async def _generate_fallback(self, enhanced_prompt: str, style: str) -> Dict[str, Any]:
|
206 |
+
"""Generate fallback placeholder image"""
|
207 |
+
try:
|
208 |
+
# Create a simple colored image based on prompt
|
209 |
+
import hashlib
|
210 |
+
prompt_hash = int(hashlib.md5(enhanced_prompt.encode()).hexdigest()[:8], 16)
|
211 |
+
|
212 |
+
# Generate deterministic but varied colors
|
213 |
+
colors = [
|
214 |
+
(70, 130, 180), # Steel Blue
|
215 |
+
(60, 179, 113), # Medium Sea Green
|
216 |
+
(255, 140, 0), # Dark Orange
|
217 |
+
(106, 90, 205), # Slate Blue
|
218 |
+
(220, 20, 60), # Crimson
|
219 |
+
(255, 215, 0), # Gold
|
220 |
+
(147, 112, 219), # Medium Purple
|
221 |
+
(32, 178, 170) # Light Sea Green
|
222 |
+
]
|
223 |
+
|
224 |
+
color = colors[prompt_hash % len(colors)]
|
225 |
+
img = Image.new('RGB', (1024, 1024), color)
|
226 |
+
|
227 |
+
# Add some simple text overlay
|
228 |
+
try:
|
229 |
+
from PIL import ImageDraw, ImageFont
|
230 |
+
draw = ImageDraw.Draw(img)
|
231 |
+
|
232 |
+
# Try to use a font, fallback to default
|
233 |
+
try:
|
234 |
+
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 48)
|
235 |
+
except:
|
236 |
+
font = ImageFont.load_default()
|
237 |
+
|
238 |
+
# Add text
|
239 |
+
text = f"Marketing Image\n{style.title()} Style"
|
240 |
+
draw.multiline_text((50, 450), text, fill=(255, 255, 255), font=font, align="center")
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
logger.warning(f"Could not add text overlay: {e}")
|
244 |
+
|
245 |
+
# Convert to base64
|
246 |
+
img_buffer = io.BytesIO()
|
247 |
+
img.save(img_buffer, format='PNG')
|
248 |
+
img_buffer.seek(0)
|
249 |
+
base64_image = base64.b64encode(img_buffer.read()).decode('utf-8')
|
250 |
+
|
251 |
+
return {
|
252 |
+
"success": True,
|
253 |
+
"image_data": f"data:image/png;base64,{base64_image}",
|
254 |
+
"enhanced_prompt": enhanced_prompt,
|
255 |
+
"method": "Fallback Demo"
|
256 |
+
}
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
logger.error(f"Fallback generation failed: {e}")
|
260 |
+
return {"success": False, "error": str(e)}
|
261 |
|
262 |
+
# ====== IMAGE REVIEWER AGENT ======
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
class ImageReviewerAgent:
|
265 |
+
"""Agent responsible for reviewing generated images for quality and relevance"""
|
266 |
+
|
267 |
+
def __init__(self):
|
268 |
+
self.name = "image_reviewer_agent"
|
269 |
+
|
270 |
+
def parse_prompt_elements(self, prompt: str) -> Dict[str, List[str]]:
|
271 |
+
"""Parse prompt to extract key elements for validation"""
|
272 |
+
prompt_lower = prompt.lower()
|
273 |
+
|
274 |
+
# Define patterns for different element types
|
275 |
+
patterns = {
|
276 |
+
"subjects": [
|
277 |
+
r'\b(person|man|woman|child|people|human|figure|team|group)\b',
|
278 |
+
r'\b(product|device|phone|laptop|car|building|office|space)\b',
|
279 |
+
r'\b(logo|brand|company|business|service)\b'
|
280 |
+
],
|
281 |
+
"style": [
|
282 |
+
r'\b(realistic|photorealistic|photograph|photo)\b',
|
283 |
+
r'\b(artistic|painting|drawing|illustration)\b',
|
284 |
+
r'\b(modern|contemporary|minimalist|professional)\b',
|
285 |
+
r'\b(cartoon|animated|3d|rendered)\b'
|
286 |
+
],
|
287 |
+
"colors": [
|
288 |
+
r'\b(blue|red|green|yellow|orange|purple|pink|black|white|gray|grey)\b',
|
289 |
+
r'\b(bright|dark|light|vibrant|muted|pastel|neon)\b',
|
290 |
+
r'\b(colorful|monochrome|gradient)\b'
|
291 |
+
],
|
292 |
+
"settings": [
|
293 |
+
r'\b(office|studio|outdoor|indoor|background|scene)\b',
|
294 |
+
r'\b(professional|corporate|casual|formal)\b',
|
295 |
+
r'\b(lighting|natural light|studio lighting)\b'
|
296 |
+
],
|
297 |
+
"marketing": [
|
298 |
+
r'\b(marketing|advertisement|promotional|campaign|brand)\b',
|
299 |
+
r'\b(professional|business|corporate|commercial)\b',
|
300 |
+
r'\b(hero|banner|social media|web|digital)\b'
|
301 |
+
]
|
302 |
+
}
|
303 |
+
|
304 |
+
def extract_matches(patterns_list: List[str], text: str) -> List[str]:
|
305 |
+
matches = set()
|
306 |
+
for pattern in patterns_list:
|
307 |
+
found = re.findall(pattern, text)
|
308 |
+
matches.update(found)
|
309 |
+
return list(matches)
|
310 |
+
|
311 |
+
return {
|
312 |
+
key: extract_matches(pattern_list, prompt_lower)
|
313 |
+
for key, pattern_list in patterns.items()
|
314 |
+
}
|
315 |
+
|
316 |
+
async def review_image(self, image_data: str, original_prompt: str, enhanced_prompt: str) -> Dict[str, Any]:
|
317 |
+
"""Review generated image for quality and relevance"""
|
318 |
+
try:
|
319 |
+
logger.info("Starting image review analysis")
|
320 |
+
|
321 |
+
# Parse prompt elements
|
322 |
+
prompt_elements = self.parse_prompt_elements(original_prompt)
|
323 |
+
|
324 |
+
# Try AI-powered review if API available
|
325 |
+
if GOOGLE_AUTH and image_data.startswith("data:image"):
|
326 |
+
ai_review = await self._ai_powered_review(image_data, original_prompt, enhanced_prompt, prompt_elements)
|
327 |
+
if ai_review:
|
328 |
+
return ai_review
|
329 |
+
|
330 |
+
# Fallback to prompt-based analysis
|
331 |
+
return await self._prompt_based_review(original_prompt, enhanced_prompt, prompt_elements)
|
332 |
+
|
333 |
+
except Exception as e:
|
334 |
+
logger.error(f"Image review failed: {e}")
|
335 |
+
return self._fallback_review(original_prompt)
|
336 |
+
|
337 |
+
async def _ai_powered_review(self, image_data: str, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Optional[Dict[str, Any]]:
|
338 |
+
"""Review image using Google Gemini Vision"""
|
339 |
+
try:
|
340 |
+
# Extract image from data URL
|
341 |
+
if not image_data.startswith("data:image"):
|
342 |
+
return None
|
343 |
+
|
344 |
+
image_b64 = image_data.split(',')[1]
|
345 |
+
image_bytes = base64.b64decode(image_b64)
|
346 |
+
image = Image.open(io.BytesIO(image_bytes))
|
347 |
+
|
348 |
+
# Create detailed analysis prompt
|
349 |
+
analysis_prompt = f"""
|
350 |
+
Analyze this marketing image that was generated from: "{original_prompt}"
|
351 |
+
Enhanced prompt used: "{enhanced_prompt}"
|
352 |
+
|
353 |
+
Key elements to verify:
|
354 |
+
- Subjects: {', '.join(prompt_elements.get('subjects', []))}
|
355 |
+
- Style: {', '.join(prompt_elements.get('style', []))}
|
356 |
+
- Colors: {', '.join(prompt_elements.get('colors', []))}
|
357 |
+
- Setting: {', '.join(prompt_elements.get('settings', []))}
|
358 |
+
- Marketing elements: {', '.join(prompt_elements.get('marketing', []))}
|
359 |
+
|
360 |
+
Rate the image on:
|
361 |
+
1. Technical Quality (0.0-1.0): clarity, composition, lighting, resolution
|
362 |
+
2. Prompt Relevance (0.0-1.0): how well it matches the original request
|
363 |
+
3. Marketing Effectiveness (0.0-1.0): professional appeal, brand suitability
|
364 |
+
|
365 |
+
Provide response in this format:
|
366 |
+
QUALITY_SCORE: [0.0-1.0]
|
367 |
+
RELEVANCE_SCORE: [0.0-1.0]
|
368 |
+
MARKETING_SCORE: [0.0-1.0]
|
369 |
+
|
370 |
+
STRENGTHS: [List 2-3 strong points]
|
371 |
+
ISSUES: [List 2-3 improvement areas]
|
372 |
+
RECOMMENDATIONS: [List 2-3 specific suggestions]
|
373 |
+
|
374 |
+
OVERALL_ASSESSMENT: [Brief summary of the image's marketing potential]
|
375 |
+
"""
|
376 |
+
|
377 |
+
model = genai.GenerativeModel('gemini-2.0-flash-exp')
|
378 |
+
response = model.generate_content([analysis_prompt, image])
|
379 |
+
analysis_text = response.text
|
380 |
+
|
381 |
+
return self._parse_ai_review(analysis_text, original_prompt)
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
logger.warning(f"AI-powered review failed: {e}")
|
385 |
+
return None
|
386 |
+
|
387 |
+
def _parse_ai_review(self, analysis_text: str, original_prompt: str) -> Dict[str, Any]:
|
388 |
+
"""Parse AI review response into structured feedback"""
|
389 |
+
|
390 |
+
def extract_score(text: str, score_type: str) -> float:
|
391 |
+
pattern = rf"{score_type}_SCORE:\s*([\d.]+)"
|
392 |
+
match = re.search(pattern, text, re.IGNORECASE)
|
393 |
+
if match:
|
394 |
+
try:
|
395 |
+
return min(1.0, max(0.0, float(match.group(1))))
|
396 |
+
except ValueError:
|
397 |
+
pass
|
398 |
+
return 0.7
|
399 |
+
|
400 |
+
def extract_list_section(text: str, section: str) -> List[str]:
|
401 |
+
pattern = rf"{section}:\s*(.+?)(?=\n[A-Z_]+:|$)"
|
402 |
+
match = re.search(pattern, text, re.IGNORECASE | re.DOTALL)
|
403 |
+
if match:
|
404 |
+
items_text = match.group(1).strip()
|
405 |
+
items = [item.strip().strip('-β’*').strip()
|
406 |
+
for item in re.split(r'\n|,', items_text)
|
407 |
+
if item.strip() and len(item.strip()) > 3]
|
408 |
+
return items[:3] # Limit to 3 items
|
409 |
+
return []
|
410 |
+
|
411 |
+
try:
|
412 |
+
# Extract scores
|
413 |
+
quality_score = extract_score(analysis_text, "QUALITY")
|
414 |
+
relevance_score = extract_score(analysis_text, "RELEVANCE")
|
415 |
+
marketing_score = extract_score(analysis_text, "MARKETING")
|
416 |
+
|
417 |
+
# Extract feedback sections
|
418 |
+
strengths = extract_list_section(analysis_text, "STRENGTHS")
|
419 |
+
issues = extract_list_section(analysis_text, "ISSUES")
|
420 |
+
recommendations = extract_list_section(analysis_text, "RECOMMENDATIONS")
|
421 |
+
|
422 |
+
# Extract overall assessment
|
423 |
+
assessment_match = re.search(r"OVERALL_ASSESSMENT:\s*(.+?)(?=\n[A-Z_]+:|$)",
|
424 |
+
analysis_text, re.IGNORECASE | re.DOTALL)
|
425 |
+
overall_assessment = assessment_match.group(1).strip() if assessment_match else "Good marketing image potential"
|
426 |
+
|
427 |
+
# Calculate weighted overall score (emphasize marketing effectiveness)
|
428 |
+
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
|
429 |
+
|
430 |
+
# Determine pass/fail
|
431 |
+
passed = overall_score >= 0.7 and relevance_score >= 0.6
|
432 |
+
|
433 |
+
return {
|
434 |
+
"success": True,
|
435 |
+
"overall_score": round(overall_score, 2),
|
436 |
+
"quality_score": round(quality_score, 2),
|
437 |
+
"relevance_score": round(relevance_score, 2),
|
438 |
+
"marketing_score": round(marketing_score, 2),
|
439 |
+
"passed": passed,
|
440 |
+
"strengths": strengths,
|
441 |
+
"issues": issues,
|
442 |
+
"recommendations": recommendations,
|
443 |
+
"overall_assessment": overall_assessment,
|
444 |
+
"review_method": "AI-Powered (Gemini Vision)"
|
445 |
+
}
|
446 |
+
|
447 |
+
except Exception as e:
|
448 |
+
logger.error(f"Error parsing AI review: {e}")
|
449 |
+
return self._fallback_review(original_prompt)
|
450 |
+
|
451 |
+
async def _prompt_based_review(self, original_prompt: str, enhanced_prompt: str, prompt_elements: Dict) -> Dict[str, Any]:
|
452 |
+
"""Review based on prompt analysis when AI review isn't available"""
|
453 |
+
|
454 |
+
issues = []
|
455 |
+
recommendations = []
|
456 |
+
strengths = []
|
457 |
+
|
458 |
+
# Analyze prompt completeness
|
459 |
+
total_elements = sum(len(elements) for elements in prompt_elements.values())
|
460 |
+
|
461 |
+
# Base scoring
|
462 |
+
if total_elements >= 8:
|
463 |
+
base_score = 0.8
|
464 |
+
strengths.append("Comprehensive prompt with detailed specifications")
|
465 |
+
elif total_elements >= 5:
|
466 |
+
base_score = 0.7
|
467 |
+
strengths.append("Good prompt detail level")
|
468 |
+
elif total_elements >= 3:
|
469 |
+
base_score = 0.6
|
470 |
+
issues.append("Prompt could use more specific details")
|
471 |
+
else:
|
472 |
+
base_score = 0.5
|
473 |
+
issues.append("Prompt lacks sufficient detail for optimal results")
|
474 |
+
recommendations.append("Add more specific details about subjects, style, and setting")
|
475 |
+
|
476 |
+
# Check for marketing-specific elements
|
477 |
+
marketing_elements = prompt_elements.get('marketing', [])
|
478 |
+
if marketing_elements:
|
479 |
+
base_score += 0.1
|
480 |
+
strengths.append("Contains marketing-focused language")
|
481 |
+
else:
|
482 |
+
recommendations.append("Consider adding marketing-specific context")
|
483 |
+
|
484 |
+
# Check for style specification
|
485 |
+
style_elements = prompt_elements.get('style', [])
|
486 |
+
if style_elements:
|
487 |
+
strengths.append(f"Clear style direction: {', '.join(style_elements[:2])}")
|
488 |
+
else:
|
489 |
+
issues.append("No clear artistic style specified")
|
490 |
+
recommendations.append("Specify desired artistic style (realistic, artistic, etc.)")
|
491 |
+
|
492 |
+
# Check for subject clarity
|
493 |
+
subject_elements = prompt_elements.get('subjects', [])
|
494 |
+
if subject_elements:
|
495 |
+
strengths.append(f"Clear subjects identified: {', '.join(subject_elements[:2])}")
|
496 |
+
else:
|
497 |
+
issues.append("Main subjects not clearly specified")
|
498 |
+
recommendations.append("Clearly define what should be the main focus")
|
499 |
+
|
500 |
+
# Calculate scores
|
501 |
+
quality_score = min(1.0, base_score + 0.1) # Slight boost for quality
|
502 |
+
relevance_score = base_score # Based on prompt completeness
|
503 |
+
marketing_score = base_score + (0.1 if marketing_elements else -0.1)
|
504 |
+
|
505 |
+
overall_score = (quality_score * 0.3 + relevance_score * 0.4 + marketing_score * 0.3)
|
506 |
+
passed = overall_score >= 0.6
|
507 |
+
|
508 |
+
return {
|
509 |
+
"success": True,
|
510 |
+
"overall_score": round(overall_score, 2),
|
511 |
+
"quality_score": round(quality_score, 2),
|
512 |
+
"relevance_score": round(relevance_score, 2),
|
513 |
+
"marketing_score": round(marketing_score, 2),
|
514 |
+
"passed": passed,
|
515 |
+
"strengths": strengths[:3],
|
516 |
+
"issues": issues[:3],
|
517 |
+
"recommendations": recommendations[:3],
|
518 |
+
"overall_assessment": f"Prompt-based analysis shows {'good' if passed else 'moderate'} marketing image potential",
|
519 |
+
"review_method": "Prompt Analysis"
|
520 |
+
}
|
521 |
+
|
522 |
+
def _fallback_review(self, original_prompt: str) -> Dict[str, Any]:
|
523 |
+
"""Fallback review when all else fails"""
|
524 |
+
word_count = len(original_prompt.split())
|
525 |
+
base_score = min(0.8, max(0.4, 0.4 + (word_count * 0.02)))
|
526 |
+
|
527 |
+
return {
|
528 |
+
"success": True,
|
529 |
+
"overall_score": base_score,
|
530 |
+
"quality_score": base_score,
|
531 |
+
"relevance_score": base_score,
|
532 |
+
"marketing_score": base_score,
|
533 |
+
"passed": base_score >= 0.6,
|
534 |
+
"strengths": ["Prompt provided for image generation"],
|
535 |
+
"issues": ["Unable to perform detailed analysis"],
|
536 |
+
"recommendations": ["Consider regenerating with more detailed prompt"],
|
537 |
+
"overall_assessment": "Basic review completed",
|
538 |
+
"review_method": "Fallback"
|
539 |
+
}
|
540 |
|
541 |
+
# ====== MAIN APPLICATION WORKFLOW ======
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
+
# Initialize agents
|
544 |
+
generator_agent = ImageGeneratorAgent()
|
545 |
+
reviewer_agent = ImageReviewerAgent()
|
|
|
|
|
|
|
|
|
546 |
|
547 |
+
def generate_marketing_image_with_review(
|
548 |
+
prompt: str,
|
549 |
+
style: str = "realistic",
|
550 |
+
quality_threshold: float = 0.8,
|
551 |
+
max_iterations: int = 2,
|
552 |
+
progress=gr.Progress(track_tqdm=True)
|
553 |
+
):
|
554 |
+
"""
|
555 |
+
Main workflow: Generate image and review it
|
556 |
+
"""
|
557 |
+
|
558 |
+
if not prompt.strip():
|
559 |
+
return None, "Please enter a prompt to generate an image.", "β No Prompt", ""
|
560 |
+
|
561 |
+
try:
|
562 |
+
progress(0.1, desc="Initializing generation workflow...")
|
563 |
+
|
564 |
+
# Step 1: Generate image
|
565 |
+
progress(0.3, desc="Generating marketing image...")
|
566 |
+
generation_result = asyncio.run(generator_agent.generate_image(prompt, style))
|
567 |
+
|
568 |
+
if not generation_result.get("success"):
|
569 |
+
error_msg = f"Image generation failed: {generation_result.get('error', 'Unknown error')}"
|
570 |
+
return None, error_msg, "β Generation Failed", ""
|
571 |
+
|
572 |
+
image_data = generation_result["image_data"]
|
573 |
+
enhanced_prompt = generation_result["enhanced_prompt"]
|
574 |
+
|
575 |
+
# Convert base64 to PIL Image for display
|
576 |
+
if image_data.startswith("data:image"):
|
577 |
+
image_b64 = image_data.split(',')[1]
|
578 |
+
image_bytes = base64.b64decode(image_b64)
|
579 |
+
display_image = Image.open(io.BytesIO(image_bytes))
|
580 |
+
else:
|
581 |
+
display_image = None
|
582 |
+
|
583 |
+
progress(0.6, desc="Reviewing image quality...")
|
584 |
+
|
585 |
+
# Step 2: Review the generated image
|
586 |
+
review_result = asyncio.run(reviewer_agent.review_image(image_data, prompt, enhanced_prompt))
|
587 |
+
|
588 |
+
progress(0.9, desc="Finalizing results...")
|
589 |
+
|
590 |
+
# Step 3: Format results
|
591 |
+
if review_result.get("success"):
|
592 |
+
# Build quality information display
|
593 |
+
quality_info = f"""
|
594 |
+
## π― Review Results
|
595 |
+
|
596 |
+
**Overall Score:** {review_result['overall_score']:.2f}/1.0
|
597 |
+
**Status:** {'β
Approved' if review_result['passed'] else 'β οΈ Needs Improvement'}
|
598 |
|
599 |
+
### Detailed Scores
|
600 |
+
- **Quality:** {review_result['quality_score']:.2f}/1.0
|
601 |
+
- **Relevance:** {review_result['relevance_score']:.2f}/1.0
|
602 |
+
- **Marketing Appeal:** {review_result['marketing_score']:.2f}/1.0
|
603 |
+
|
604 |
+
### πͺ Strengths
|
605 |
+
{chr(10).join(f"β’ {strength}" for strength in review_result.get('strengths', []))}
|
606 |
+
|
607 |
+
### β οΈ Areas for Improvement
|
608 |
+
{chr(10).join(f"β’ {issue}" for issue in review_result.get('issues', []))}
|
609 |
+
|
610 |
+
### π‘ Recommendations
|
611 |
+
{chr(10).join(f"β’ {rec}" for rec in review_result.get('recommendations', []))}
|
612 |
+
|
613 |
+
### π Assessment
|
614 |
+
{review_result.get('overall_assessment', 'Review completed')}
|
615 |
+
|
616 |
+
---
|
617 |
+
*Review Method: {review_result.get('review_method', 'Standard')}*
|
618 |
+
*Enhanced Prompt: {enhanced_prompt[:100]}...*
|
619 |
+
"""
|
620 |
+
|
621 |
+
review_status = "β
Approved" if review_result['passed'] else "β οΈ Needs Review"
|
622 |
+
|
623 |
+
# Add generation method info
|
624 |
+
debug_info = f"""
|
625 |
+
**Generation Details:**
|
626 |
+
- Method: {generation_result.get('method', 'Unknown')}
|
627 |
+
- Original Prompt: {prompt}
|
628 |
+
- Enhanced Prompt: {enhanced_prompt}
|
629 |
+
- Style: {style}
|
630 |
+
- API Status: {'β
Connected' if GOOGLE_AUTH else 'β οΈ Demo Mode'}
|
631 |
+
"""
|
632 |
+
|
633 |
+
else:
|
634 |
+
quality_info = f"Review failed: {review_result.get('error', 'Unknown error')}"
|
635 |
+
review_status = "β Review Failed"
|
636 |
+
debug_info = f"Generation Method: {generation_result.get('method', 'Unknown')}"
|
637 |
+
|
638 |
+
progress(1.0, desc="Complete!")
|
639 |
+
|
640 |
+
return display_image, quality_info, review_status, debug_info
|
641 |
+
|
642 |
+
except Exception as e:
|
643 |
+
logger.error(f"Workflow error: {str(e)}")
|
644 |
+
error_msg = f"Workflow failed: {str(e)}"
|
645 |
+
return None, error_msg, "β Error", f"Error details: {str(e)}"
|
646 |
+
|
647 |
+
# ====== GRADIO INTERFACE ======
|
648 |
+
|
649 |
+
def create_gradio_interface():
|
650 |
+
"""Create the complete Gradio interface"""
|
651 |
+
|
652 |
+
custom_css = """
|
653 |
+
.gradio-container {
|
654 |
+
max-width: 1400px !important;
|
655 |
+
margin: auto !important;
|
656 |
+
}
|
657 |
+
.header-text {
|
658 |
+
text-align: center;
|
659 |
+
color: #1f77b4;
|
660 |
+
margin-bottom: 2rem;
|
661 |
+
}
|
662 |
+
.quality-info {
|
663 |
+
background-color: #f8f9fa;
|
664 |
+
padding: 1rem;
|
665 |
+
border-radius: 0.5rem;
|
666 |
+
border-left: 4px solid #1f77b4;
|
667 |
+
font-family: monospace;
|
668 |
+
}
|
669 |
+
.status-approved { color: #28a745; font-weight: bold; }
|
670 |
+
.status-warning { color: #ffc107; font-weight: bold; }
|
671 |
+
.status-error { color: #dc3545; font-weight: bold; }
|
672 |
+
"""
|
673 |
+
|
674 |
+
with gr.Blocks(css=custom_css, title="Marketing Image Generator with AI Review") as interface:
|
675 |
+
|
676 |
+
# Header
|
677 |
+
gr.Markdown("""
|
678 |
+
# π¨ Marketing Image Generator with AI Review
|
679 |
+
### Professional marketing images with automated quality assurance
|
680 |
+
|
681 |
+
This system combines **Google Imagen** for image generation with **Google Gemini Vision** for intelligent quality review.
|
682 |
+
Perfect for creating professional marketing materials with AI-powered feedback.
|
683 |
+
""", elem_classes=["header-text"])
|
684 |
+
|
685 |
+
# API Status indicator
|
686 |
+
api_status = "π’ Google AI Connected" if GOOGLE_AUTH else "π‘ Demo Mode (No API Key)"
|
687 |
+
gr.Markdown(f"**Status:** {api_status}")
|
688 |
+
|
689 |
+
with gr.Row():
|
690 |
+
with gr.Column(scale=2):
|
691 |
+
# Input Section
|
692 |
+
gr.Markdown("## π Describe Your Marketing Image")
|
693 |
+
|
694 |
+
prompt = gr.Textbox(
|
695 |
+
label="Marketing Image Description",
|
696 |
+
placeholder="e.g., A professional team of diverse colleagues collaborating in a modern office space with natural lighting, for a corporate website hero image",
|
697 |
+
lines=4,
|
698 |
+
info="Be specific about subjects, setting, style, and intended marketing use"
|
699 |
+
)
|
700 |
+
|
701 |
+
with gr.Row():
|
702 |
+
style = gr.Dropdown(
|
703 |
+
choices=["realistic", "artistic", "cartoon", "illustration", "photographic"],
|
704 |
+
value="realistic",
|
705 |
+
label="Art Style",
|
706 |
+
info="Choose the visual style that fits your brand"
|
707 |
+
)
|
708 |
+
|
709 |
+
quality_threshold = gr.Slider(
|
710 |
+
minimum=0.0,
|
711 |
+
maximum=1.0,
|
712 |
+
value=0.7,
|
713 |
+
step=0.1,
|
714 |
+
label="Quality Threshold",
|
715 |
+
info="Minimum score for approval (0.0 = lenient, 1.0 = strict)"
|
716 |
+
)
|
717 |
+
|
718 |
+
with gr.Accordion("π§ Advanced Options", open=False):
|
719 |
+
max_iterations = gr.Slider(
|
720 |
+
minimum=1,
|
721 |
+
maximum=3,
|
722 |
+
value=2,
|
723 |
+
step=1,
|
724 |
+
label="Max Review Iterations",
|
725 |
+
info="Maximum attempts to improve the image"
|
726 |
+
)
|
727 |
+
|
728 |
+
generate_btn = gr.Button(
|
729 |
+
"π Generate & Review Marketing Image",
|
730 |
+
variant="primary",
|
731 |
+
size="lg"
|
732 |
)
|
733 |
+
|
734 |
+
with gr.Column(scale=3):
|
735 |
+
# Output Section
|
736 |
+
gr.Markdown("## πΌοΈ Generated Image & Analysis")
|
737 |
+
|
738 |
+
with gr.Row():
|
739 |
+
with gr.Column(scale=2):
|
740 |
+
generated_image = gr.Image(
|
741 |
+
label="Your Marketing Image",
|
742 |
+
type="pil",
|
743 |
+
interactive=False,
|
744 |
+
height=400
|
745 |
+
)
|
746 |
+
|
747 |
+
with gr.Column(scale=1):
|
748 |
+
review_status = gr.Textbox(
|
749 |
+
label="Review Status",
|
750 |
+
value="β³ Ready to Generate",
|
751 |
+
interactive=False,
|
752 |
+
max_lines=1
|
753 |
+
)
|
754 |
+
|
755 |
+
quality_info = gr.Markdown(
|
756 |
+
label="AI Quality Analysis",
|
757 |
+
value="*Generate an image to see detailed AI quality analysis and recommendations*",
|
758 |
+
elem_classes=["quality-info"]
|
759 |
+
)
|
760 |
+
|
761 |
+
# Debug/Technical Info (Collapsible)
|
762 |
+
with gr.Accordion("π§ Technical Details", open=False):
|
763 |
+
debug_info = gr.Markdown(
|
764 |
+
value="*Technical information will appear here after generation*"
|
765 |
+
)
|
766 |
+
|
767 |
+
# Examples Section
|
768 |
+
gr.Markdown("## π‘ Example Marketing Prompts")
|
769 |
+
|
770 |
+
examples = gr.Examples(
|
771 |
+
examples=[
|
772 |
+
["A diverse team of professionals collaborating around a modern conference table in a bright office space, corporate website hero image", "realistic"],
|
773 |
+
["A sleek product showcase featuring a smartphone on a clean white background with dramatic lighting, for e-commerce", "photographic"],
|
774 |
+
["A friendly customer service representative wearing a headset, smiling while helping clients in a contemporary office", "realistic"],
|
775 |
+
["A minimalist workspace setup with laptop, coffee, and plants, perfect for productivity app marketing", "artistic"],
|
776 |
+
["An abstract representation of data flow and connectivity, modern tech company branding", "illustration"],
|
777 |
+
["A celebration scene with confetti and happy people, perfect for achievement or success marketing", "realistic"]
|
778 |
+
],
|
779 |
+
inputs=[prompt, style],
|
780 |
+
label="Click any example to try it out!"
|
781 |
+
)
|
782 |
+
|
783 |
+
# Connect the workflow
|
784 |
+
generate_btn.click(
|
785 |
+
fn=generate_marketing_image_with_review,
|
786 |
+
inputs=[prompt, style, quality_threshold, max_iterations],
|
787 |
+
outputs=[generated_image, quality_info, review_status, debug_info],
|
788 |
+
show_progress=True
|
789 |
+
)
|
790 |
+
|
791 |
+
# Footer
|
792 |
+
gr.Markdown("""
|
793 |
+
---
|
794 |
+
<div style='text-align: center; color: #666; font-size: 0.9rem;'>
|
795 |
+
<p>π¨ <strong>Marketing Image Generator with AI Review</strong></p>
|
796 |
+
<p>Powered by Google Imagen & Gemini Vision | Built for Professional Marketing Teams</p>
|
797 |
+
<p><em>Generate β Review β Perfect: Your AI-powered creative workflow</em></p>
|
798 |
+
</div>
|
799 |
+
""")
|
800 |
+
|
801 |
+
return interface
|
802 |
|
803 |
+
# ====== APPLICATION ENTRY POINT ======
|
804 |
+
|
805 |
+
# Create the interface
|
806 |
+
demo = create_gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
807 |
|
808 |
if __name__ == "__main__":
|
809 |
+
logger.info("Starting Marketing Image Generator with AI Review")
|
810 |
+
demo.launch(
|
811 |
+
server_name="0.0.0.0",
|
812 |
+
server_port=7860,
|
813 |
+
share=False,
|
814 |
+
show_error=True,
|
815 |
+
)
|