""" Marketing Image Generator with Gradio MCP Server Professional AI image generation using Google Imagen4 with marketing review Deployed on HuggingFace Spaces with built-in MCP server support """ import gradio as gr import os import logging import json import base64 import asyncio from typing import Dict, Any, Tuple, List from PIL import Image import io # Google Service Account Authentication Setup def setup_google_credentials(): """Setup Google credentials from service account JSON""" try: service_account_json = os.getenv("GOOGLE_SERVICE_ACCOUNT_JSON") if service_account_json: import tempfile from google.oauth2 import service_account # Clean and parse the JSON credentials # Remove common problematic characters cleaned_json = service_account_json.strip() # Replace common escape sequences cleaned_json = cleaned_json.replace('\\n', '\n').replace('\\t', '\t').replace('\\r', '\r') credentials_dict = json.loads(cleaned_json) # Create credentials from service account info credentials = service_account.Credentials.from_service_account_info(credentials_dict) # Set the credentials in environment with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f: json.dump(credentials_dict, f) os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = f.name print("✅ Google Cloud service account configured") return True except Exception as e: print(f"⚠️ Google Cloud service account setup failed: {e}") print("⚠️ Google Cloud service account not found") return False # Setup Google credentials on startup setup_google_credentials() # Google AI imports try: import google.generativeai as genai from google import genai as genai_sdk GEMINI_AVAILABLE = True except ImportError: GEMINI_AVAILABLE = False # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Get API keys - prioritise HuggingFace Secrets GCP_KEYS = [ # Hugging Face Secrets (these are the primary ones for HF deployment) os.getenv("GOOGLE_API_KEY"), os.getenv("GEMINI_API_KEY"), os.getenv("GCP_API_KEY"), # Local development keys (fallback for local testing) os.getenv("GCP_KEY_1"), os.getenv("GCP_KEY_2"), os.getenv("GCP_KEY_3"), os.getenv("GCP_KEY_4"), os.getenv("GCP_KEY_5"), os.getenv("GCP_KEY_6") ] GOOGLE_API_KEY = next((key for key in GCP_KEYS if key), None) if GOOGLE_API_KEY and GEMINI_AVAILABLE: genai.configure(api_key=GOOGLE_API_KEY) logger.info("✅ Google AI configured successfully") logger.info(f"Key source: {[key for key in ['GOOGLE_API_KEY', 'GEMINI_API_KEY', 'GCP_API_KEY'] if os.getenv(key)]}") else: logger.warning(f"❌ Google AI NOT configured - GEMINI_AVAILABLE: {GEMINI_AVAILABLE}, GOOGLE_API_KEY: {'present' if GOOGLE_API_KEY else 'missing'}") # MCP-enabled functions for Agent1 (Image Generator) def enhance_prompt_with_gemini(prompt: str, style: str) -> str: """ Use Gemini to enhance the user's prompt for better image generation. Args: prompt (str): The original marketing prompt style (str): The desired image style Returns: str: Enhanced prompt optimised for image generation """ if not GEMINI_AVAILABLE or not GOOGLE_API_KEY: # Basic enhancement without Gemini style_enhancers = { "realistic": "photorealistic, high detail, professional photography, sharp focus", "artistic": "artistic masterpiece, creative composition, painterly style", "cartoon": "cartoon style, vibrant colours, playful, animated character design", "photographic": "professional photograph, high quality, detailed, commercial photography", "illustration": "digital illustration, clean vector art, modern design" } enhancer = style_enhancers.get(style.lower(), "high quality, detailed") return f"{prompt}, {enhancer}" try: enhancement_prompt = f""" You are an expert prompt engineer for AI image generation. Take this marketing prompt and enhance it for optimal results. Original prompt: "{prompt}" Desired style: "{style}" Please provide an enhanced version that: 1. Maintains the core marketing intent 2. Adds specific technical details for better image quality 3. Includes appropriate style descriptors for "{style}" style 4. Adds professional marketing composition guidance 5. Keeps the enhanced prompt under 150 words Return only the enhanced prompt without explanation. """ model = genai.GenerativeModel('gemini-2.5-pro') response = model.generate_content(enhancement_prompt) enhanced = response.text.strip() logger.info(f"Gemini enhanced prompt: {enhanced}") return enhanced except Exception as e: logger.warning(f"Failed to enhance prompt with Gemini: {e}") style_enhancers = { "realistic": "photorealistic, high detail, professional photography", "artistic": "artistic masterpiece, creative composition", "cartoon": "cartoon style, vibrant colours, playful", "photographic": "professional photograph, high quality, detailed", "illustration": "digital illustration, clean design" } enhancer = style_enhancers.get(style.lower(), "high quality") return f"{prompt}, {enhancer}" def generate_marketing_image(prompt: str, style: str = "realistic") -> str: """ Generate a professional marketing image using Google Imagen4. Args: prompt (str): Description of the marketing image to generate style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration) Returns: str: JSON string containing image data and metadata """ logger.info(f"🎨 Generating marketing image: {prompt}") try: # Enhance the prompt enhanced_prompt = enhance_prompt_with_gemini(prompt, style) # Try to generate with Google Genai SDK if GEMINI_AVAILABLE and GOOGLE_API_KEY: try: logger.info("🎨 Using Google Genai SDK for image generation") logger.info(f"API Key available: {GOOGLE_API_KEY[:10]}...") # Initialise the genai SDK client client = genai_sdk.Client(api_key=GOOGLE_API_KEY) # Generate image using Imagen 4.0 with optimised safety filtering # Safety configuration: "block_low_and_above" - allows corporate/business content # while maintaining essential safety guardrails. This setting significantly # improves generation success for financial institutions, corporate brands, # and marketing content while blocking genuinely harmful content. result = client.models.generate_images( model="imagen-4.0-generate-preview-06-06", prompt=enhanced_prompt, config={ "number_of_images": 1, "output_mime_type": "image/png", "safety_filter_level": "block_low_and_above", # Reduced from default strict filtering "include_safety_attributes": False # Cleaner response without safety metadata } ) # Check if we got a valid response with images if result and hasattr(result, 'generated_images') and len(result.generated_images) > 0: generated_image = result.generated_images[0] if hasattr(generated_image, 'image') and hasattr(generated_image.image, 'image_bytes'): # Convert image bytes to base64 data URL image_bytes = generated_image.image.image_bytes img_base64 = base64.b64encode(image_bytes).decode('utf-8') # Determine MIME type from the response or default to PNG mime_type = getattr(generated_image.image, 'mime_type', 'image/png') image_url = f"data:{mime_type};base64,{img_base64}" response_data = { "success": True, "image_url": image_url, "prompt": prompt, "enhanced_prompt": enhanced_prompt, "style": style, "generation_method": "imagen-4.0", "model_name": "imagen-4.0-generate-preview-06-06", "real_ai_generation": True } logger.info("✅ Successfully generated real AI image with Google SDK!") return json.dumps(response_data) except Exception as e: logger.error(f"Google SDK generation failed: {e}") logger.error(f"Error type: {type(e).__name__}") if hasattr(e, 'response'): logger.error(f"Response status: {getattr(e.response, 'status_code', 'unknown')}") logger.error(f"Response text: {getattr(e.response, 'text', 'unknown')}") # Fallback: Generate a deterministic placeholder logger.info("🔄 Using placeholder URL fallback") prompt_hash = abs(hash(enhanced_prompt)) % 10000 image_url = f"https://picsum.photos/seed/{prompt_hash}/1024/1024" response_data = { "success": True, "image_url": image_url, "prompt": prompt, "enhanced_prompt": enhanced_prompt, "style": style, "generation_method": "placeholder", "real_ai_generation": False } return json.dumps(response_data) except Exception as e: logger.error(f"Image generation failed: {e}") return json.dumps({ "success": False, "error": f"Generation failed: {str(e)}", "prompt": prompt, "style": style }) def analyse_marketing_image_with_gemini(image_url: str, prompt: str, review_guidelines: str = "") -> str: """ Analyse a generated marketing image using Gemini Vision for quality, relevance, and compliance. Args: image_url (str): URL or base64 data of the generated image prompt (str): The original marketing prompt used to generate the image review_guidelines (str): Specific guidelines to check against Returns: str: JSON string containing detailed analysis and recommendations """ logger.info(f"🔍 Analyzing marketing image with Gemini Vision: {prompt[:50]}...") if not GEMINI_AVAILABLE or not GOOGLE_API_KEY: logger.warning("Gemini Vision not available, using fallback analysis") return _fallback_image_analysis(prompt, review_guidelines) try: # Create a detailed prompt for marketing image analysis analysis_prompt = f""" You are a Marketing Image Reviewer analyzing this image generated from: "{prompt}" CUSTOM REVIEW GUIDELINES (HIGHEST PRIORITY): {review_guidelines if review_guidelines.strip() else 'No specific guidelines provided - use standard marketing criteria'} CRITICAL MARKETING CHECKS: 1. **Language/Text Requirements**: If guidelines mention "English" or specific language requirements, verify ALL visible text matches 2. **Brand Compliance**: Check professional appearance, colour consistency, readability 3. **Marketing Effectiveness**: Assess visual appeal and message clarity 4. **Target Audience**: Evaluate cultural appropriateness and accessibility Evaluate on these marketing criteria: 1. **Marketing Quality**: Visual appeal, composition, professional appearance (0.0 to 1.0) 2. **Brand/Prompt Compliance**: How well it matches requirements and guidelines (0.0 to 1.0) 3. **Marketing Effectiveness**: Message clarity, target audience appeal (0.0 to 1.0) RESPONSE FORMAT: Marketing Quality Score: [0.0-1.0] Brand Compliance Score: [0.0-1.0] Marketing Effectiveness Score: [0.0-1.0] Guideline Violations: [List specific violations of user guidelines, especially language/text requirements] Missing Elements: [List prompt elements missing from image] Present Elements: [List prompt elements correctly represented] Marketing Issues: [Brand compliance, readability, professional appearance problems] Language/Text Issues: [Specific text/signage language violations if any] Effectiveness Issues: [Marketing message clarity and appeal problems] Marketing Recommendations: [Specific marketing-focused improvement suggestions] CRITICAL: If guidelines specify English text/signage, explicitly check and report on ALL visible text language compliance. """ # Load the image image = None if image_url.startswith('data:image'): # Handle base64 data URLs base64_data = image_url.split(',')[1] image_bytes = base64.b64decode(base64_data) image = Image.open(io.BytesIO(image_bytes)) elif image_url.startswith('http'): # Handle regular URLs import requests response = requests.get(image_url, timeout=10) if response.status_code == 200: image = Image.open(io.BytesIO(response.content)) else: logger.error(f"Failed to fetch image from URL: {response.status_code}") return _fallback_image_analysis(prompt, review_guidelines) else: logger.error("Invalid image URL format") return _fallback_image_analysis(prompt, review_guidelines) if not image: logger.error("Could not load image for analysis") return _fallback_image_analysis(prompt, review_guidelines) # Generate analysis using Gemini 2.5 Pro with enhanced multimodal understanding model = genai.GenerativeModel('gemini-2.5-pro') response = model.generate_content([analysis_prompt, image]) analysis_text = response.text # Parse the analysis response parsed_result = _parse_gemini_analysis(analysis_text, prompt) logger.info(f"✅ Gemini Vision analysis completed with score: {parsed_result.get('overall_score', 0)}") return json.dumps(parsed_result) except Exception as e: logger.error(f"Error in Gemini Vision analysis: {str(e)}") return _fallback_image_analysis(prompt, review_guidelines) def _parse_gemini_analysis(analysis_text: str, original_prompt: str) -> Dict[str, Any]: """Parse Gemini Vision analysis response""" try: # Extract scores using regex patterns import re def extract_score(text: str, score_type: str) -> float: pattern = rf"{score_type}.*?Score:\s*([0-9]*\.?[0-9]+)" match = re.search(pattern, text, re.IGNORECASE) if match: return float(match.group(1)) return 0.7 # Default score def extract_list_items(text: str, section: str) -> List[str]: pattern = rf"{section}:\s*\[(.*?)\]" match = re.search(pattern, text, re.IGNORECASE | re.DOTALL) if match: items_text = match.group(1).strip() if items_text: return [item.strip() for item in items_text.split(',') if item.strip()] return [] # Extract scores marketing_quality = extract_score(analysis_text, "Marketing Quality") brand_compliance = extract_score(analysis_text, "Brand Compliance") marketing_effectiveness = extract_score(analysis_text, "Marketing Effectiveness") # Calculate overall score overall_score = (marketing_quality * 0.4 + brand_compliance * 0.4 + marketing_effectiveness * 0.2) # Extract lists violations = extract_list_items(analysis_text, "Guideline Violations") missing_elements = extract_list_items(analysis_text, "Missing Elements") present_elements = extract_list_items(analysis_text, "Present Elements") marketing_issues = extract_list_items(analysis_text, "Marketing Issues") language_issues = extract_list_items(analysis_text, "Language/Text Issues") effectiveness_issues = extract_list_items(analysis_text, "Effectiveness Issues") recommendations = extract_list_items(analysis_text, "Marketing Recommendations") # Generate recommendations if none found if not recommendations: if overall_score > 0.8: recommendations = ["Excellent marketing image! Meets all quality standards"] elif overall_score > 0.6: recommendations = ["Good marketing image with minor improvements needed"] else: recommendations = ["Image needs significant improvements for marketing use"] return { "success": True, "overall_score": round(overall_score, 2), "marketing_quality": round(marketing_quality, 2), "brand_compliance": round(brand_compliance, 2), "marketing_effectiveness": round(marketing_effectiveness, 2), "violations": violations, "missing_elements": missing_elements, "present_elements": present_elements, "marketing_issues": marketing_issues, "language_issues": language_issues, "effectiveness_issues": effectiveness_issues, "recommendations": recommendations[:5], # Limit to top 5 "analysis_method": "gemini-2.5-pro-vision", "model_name": "gemini-2.5-pro", "original_prompt": original_prompt } except Exception as e: logger.error(f"Error parsing Gemini analysis: {str(e)}") return _fallback_image_analysis(original_prompt, "") def _fallback_image_analysis(prompt: str, review_guidelines: str) -> str: """Fallback analysis when Gemini Vision is not available""" logger.info("Using fallback text-based analysis") # Basic analysis based on prompt and guidelines word_count = len(prompt.split()) # Simple scoring based on prompt quality if word_count < 10: quality_score = 0.5 elif word_count < 20: quality_score = 0.7 else: quality_score = 0.8 # Check for marketing keywords marketing_keywords = ["professional", "corporate", "business", "marketing", "brand"] marketing_score = sum(1 for word in marketing_keywords if word.lower() in prompt.lower()) / len(marketing_keywords) # Check for language requirements language_issues = [] if "english" in review_guidelines.lower() and "english" not in prompt.lower(): language_issues.append("English language requirement not specified in prompt") # Generate recommendations recommendations = [] if marketing_score < 0.2: recommendations.append("Add marketing context (e.g., professional, business, corporate)") if language_issues: recommendations.extend(language_issues) if word_count < 10: recommendations.append("Expand prompt with more descriptive details") if not recommendations: recommendations = ["Image should meet basic marketing requirements"] overall_score = (quality_score * 0.6 + marketing_score * 0.4) return json.dumps({ "success": True, "overall_score": round(overall_score, 2), "marketing_quality": round(quality_score, 2), "brand_compliance": round(marketing_score, 2), "marketing_effectiveness": round(overall_score, 2), "violations": language_issues, "missing_elements": [], "present_elements": [], "marketing_issues": [], "language_issues": language_issues, "effectiveness_issues": [], "recommendations": recommendations, "analysis_method": "fallback_text", "original_prompt": prompt }) def generate_and_review_marketing_image(prompt: str, style: str = "realistic", review_guidelines: str = "", max_retries: int = 3, review_threshold: float = 0.8) -> str: """ Complete workflow: Generate a marketing image and provide quality review with iterations. Args: prompt (str): Description of the marketing image to generate style (str): Art style for the image (realistic, artistic, cartoon, photographic, illustration) review_guidelines (str): Specific guidelines for marketing review max_retries (int): Maximum number of generation attempts review_threshold (float): Minimum quality score required for approval Returns: str: JSON string containing image, review, and recommendations """ logger.info(f"🎭 Starting complete marketing workflow for: {prompt}") logger.info(f"🔄 Max retries: {max_retries}, Review threshold: {review_threshold}") workflow_history = [] best_result = None best_score = 0.0 try: for iteration in range(1, max_retries + 1): logger.info(f"🔄 Iteration {iteration} of {max_retries}") # Step 1: Generate the image generation_response = generate_marketing_image(prompt, style) generation_data = json.loads(generation_response) if not generation_data.get("success", False): logger.error(f"Generation failed on iteration {iteration}: {generation_data.get('error')}") workflow_history.append({ "iteration": iteration, "generation_status": "failed", "review_score": 0.0, "error": generation_data.get('error', 'Unknown error') }) continue # Step 2: Analyse the generated image with Gemini Vision image_url = generation_data.get("image_url", "") analysis_response = analyse_marketing_image_with_gemini(image_url, prompt, review_guidelines) analysis_data = json.loads(analysis_response) current_score = analysis_data.get("overall_score", 0.0) logger.info(f"📊 Iteration {iteration} score: {current_score:.2f} (threshold: {review_threshold})") # Record this iteration workflow_history.append({ "iteration": iteration, "generation_status": "success", "review_score": current_score, "review_method": analysis_data.get("analysis_method", "unknown"), "recommendations": analysis_data.get("recommendations", [])[:3] # Top 3 for history }) # Create result for this iteration current_result = { "generation_data": generation_data, "analysis_data": analysis_data, "image_url": image_url, "score": current_score, "iteration": iteration } # Keep track of best result if current_score > best_score: best_result = current_result best_score = current_score # Check if threshold is met if current_score >= review_threshold: logger.info(f"✅ Quality threshold met on iteration {iteration}! Score: {current_score:.2f}") best_result = current_result # Use this result since it passes threshold break else: logger.info(f"⚠️ Score {current_score:.2f} below threshold {review_threshold}. {'Retrying...' if iteration < max_retries else 'Max attempts reached.'}") # Enhance prompt for next iteration based on feedback if iteration < max_retries: missing_elements = analysis_data.get("missing_elements", []) violations = analysis_data.get("violations", []) if missing_elements: prompt += f" Including: {', '.join(missing_elements[:2])}" if violations and "english" in review_guidelines.lower(): prompt += " with English signage and text" # Use best result if we have one if not best_result: return json.dumps({ "success": False, "error": "All generation attempts failed", "workflow_history": workflow_history }) # Build final result final_passed = best_result["score"] >= review_threshold final_status = "passed" if final_passed else "needs_improvement" workflow_result = { "success": True, "image": { "url": best_result["image_url"], "data": best_result["image_url"], "prompt": prompt, "style": style }, "review": { "quality_score": best_result["score"], "final_status": final_status, "iterations": len(workflow_history), "passed": final_passed, "recommendations": best_result["analysis_data"].get("recommendations", []), "analysis_details": best_result["analysis_data"], "workflow_history": workflow_history }, "metadata": { "generation_method": best_result["generation_data"].get("generation_method", "unknown"), "real_ai_generation": best_result["generation_data"].get("real_ai_generation", False), "review_method": best_result["analysis_data"].get("analysis_method", "unknown"), "workflow_type": "gradio_mcp_server", "best_iteration": best_result["iteration"], "threshold_met": final_passed } } logger.info(f"✅ Complete marketing workflow successful! Best score: {best_score:.2f} from iteration {best_result['iteration']}") return json.dumps(workflow_result) except Exception as e: logger.error(f"Complete workflow failed: {e}") return json.dumps({ "success": False, "error": f"Workflow failed: {str(e)}", "prompt": prompt, "style": style }) # Gradio interface functions def process_generated_image_and_results(api_response_str: str) -> Tuple[Image.Image, str]: """Process API response and return image and review text for Gradio display""" try: response_data = json.loads(api_response_str) if not response_data.get('success', False): error_msg = response_data.get('error', 'Unknown error') # Add specific documentation links for common errors doc_link = "" if any(keyword in error_msg.lower() for keyword in ['political', 'timeout', 'stall']): doc_link = "\n\n📖 See updated safety configuration: https://huggingface.co/spaces/CognizantAI/marketing-image-generator/blob/main/README.md#content-policy--safety-configuration" elif any(keyword in error_msg.lower() for keyword in ['hsbc', 'bank', 'corporate']): doc_link = "\n\n💡 Note: Financial brands now work better with reduced safety filtering. See: https://huggingface.co/spaces/CognizantAI/marketing-image-generator/blob/main/README.md#improved-content-support" elif 'api' in error_msg.lower() or 'key' in error_msg.lower(): doc_link = "\n\n📖 See API troubleshooting: https://huggingface.co/spaces/CognizantAI/marketing-image-generator/blob/main/README.md#common-issues" return None, f"❌ Generation failed: {error_msg}{doc_link}" # Extract image data image_info = response_data.get('image', {}) image_data_b64 = image_info.get('data', image_info.get('url', '')) image = None if image_data_b64: try: if image_data_b64.startswith('data:image'): # Handle base64 data URLs base64_data = image_data_b64.split(',')[1] image_bytes = base64.b64decode(base64_data) image = Image.open(io.BytesIO(image_bytes)) elif image_data_b64.startswith('http'): # Handle regular URLs (like picsum.photos) import requests response = requests.get(image_data_b64, timeout=10) if response.status_code == 200: image = Image.open(io.BytesIO(response.content)) else: logger.error(f"Failed to fetch image from URL: {response.status_code}") except Exception as e: logger.error(f"Error processing image: {str(e)}") # Extract review data review_data = response_data.get('review', {}) analysis_details = review_data.get('analysis_details', {}) if review_data: quality_score = review_data.get('quality_score', 0) passed = review_data.get('passed', False) final_status = review_data.get('final_status', 'unknown') recommendations = review_data.get('recommendations', []) status_emoji = "🟢" if passed else "🔴" # Extract metadata about generation and review methods metadata = response_data.get('metadata', {}) generation_method = metadata.get('generation_method', 'unknown') review_method = metadata.get('review_method', 'unknown') generation_info = "" if generation_method == "imagen-4.0": model_name = metadata.get('model_name', 'imagen-4.0-generate-preview-06-06') generation_info = f"🎨 **Generated with**: {model_name} (Real AI)\n" elif generation_method == "google-genai-sdk": generation_info = "🎨 **Generated with**: Google Imagen 4.0 (Real AI)\n" elif generation_method == "placeholder": generation_info = "🎨 **Generated with**: Placeholder (Fallback)\n" review_method_info = "" if review_method == "gemini_vision": review_method_info = "🔍 **Reviewed with**: Gemini 2.5 Pro Vision (AI Analysis)\n" elif review_method == "fallback_text": review_method_info = "🔍 **Reviewed with**: Text Analysis (Fallback)\n" # Get detailed scores from analysis marketing_quality = analysis_details.get('marketing_quality', quality_score) brand_compliance = analysis_details.get('brand_compliance', quality_score) marketing_effectiveness = analysis_details.get('marketing_effectiveness', quality_score) review_text = f"""**🔍 Marketing Review Results** {generation_info}{review_method_info} **Quality Score:** {quality_score:.2f}/1.0 **Status:** {status_emoji} {final_status.upper()} **Architecture:** Gradio MCP Server **📊 Detailed Scores:** • Marketing Quality: {marketing_quality:.2f}/1.0 • Brand Compliance: {brand_compliance:.2f}/1.0 • Marketing Effectiveness: {marketing_effectiveness:.2f}/1.0 **💡 Recommendations:** """ if recommendations: for i, rec in enumerate(recommendations[:5], 1): review_text += f"{i}. {rec}\n" else: review_text += "• Image meets quality standards\n" else: review_text = "⚠️ Review data not available" return image, review_text except Exception as e: return None, f"❌ Error processing results: {str(e)}" def gradio_generate_marketing_image(prompt: str, style: str, max_retries: int, review_threshold: float, review_guidelines: str) -> Tuple[Image.Image, str]: """Gradio interface wrapper for complete marketing image generation with iterations""" if not prompt.strip(): return None, "⚠️ Please enter a prompt to generate an image." try: # Ensure parameters are correct types max_retries = int(max_retries) if max_retries is not None else 3 review_threshold = float(review_threshold) if review_threshold is not None else 0.8 review_guidelines = str(review_guidelines) if review_guidelines is not None else "" logger.info(f"🎯 Starting generation with max_retries={max_retries}, threshold={review_threshold}") # Use the complete workflow function with iteration parameters result_json = generate_and_review_marketing_image( prompt=prompt, style=style, review_guidelines=review_guidelines, max_retries=max_retries, review_threshold=review_threshold ) return process_generated_image_and_results(result_json) except Exception as e: error_message = f"❌ Error: {str(e)}\n\n📖 For troubleshooting help, see: https://huggingface.co/spaces/CognizantAI/marketing-image-generator/blob/main/README.md#content-policy--safety-configuration" logger.error(error_message) return None, error_message # Define suggested prompts SUGGESTED_PROMPTS = { "Modern office team collaboration": ("A modern office space with diverse professionals collaborating around a sleek conference table, natural lighting, professional attire, English signage visible", "realistic"), "Executive boardroom meeting": ("Professional executive boardroom with polished conference table, city skyline view, business documents, English presentations on screens", "realistic"), "Customer service excellence": ("Professional customer service representative with headset in modern call centre, English signage, clean corporate environment", "realistic"), "Product showcase display": ("Clean product showcase on white background with professional lighting, English product labels, minimalist marketing aesthetic", "realistic"), "Creative workspace design": ("Creative workspace with colourful design elements, inspirational English quotes on walls, modern furniture, artistic marketing materials", "artistic"), "Brand presentation setup": ("Professional brand presentation setup with English branded materials, corporate colours, marketing displays, conference room setting", "realistic") } # Create Gradio interface with gr.Blocks(title="Marketing Image Generator MCP", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎨 Marketing Image Generator ### Professional AI image generation with built-in MCP server support **Gradio MCP Server** → **Google Imagen4** → **Marketing Review** → **Results** *Pls wait around 1-3 minutes for the image to be made - You'll be hitting Imagen 4 a few times so it takes it sweet time to build. Also if a number a people are using it at the same time, you'll need to be patient since it's going through a a single instance. Have your prompts focused, comprehensive and sensible. Guardrails put in place, but like all AI outputs - it's on you the user to take responsibility)* """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### ⚙️ Configuration") # Main inputs prompt = gr.Textbox( label="Describe your marketing image", placeholder="e.g., A modern office space with natural lighting, featuring diverse professionals collaborating around a sleek conference table", lines=4, info="Be specific about the scene, style, mood, and any marketing elements you want to include" ) style = gr.Dropdown( choices=["realistic", "artistic", "cartoon", "photographic", "illustration"], value="realistic", label="Art Style", info="Choose the artistic style for your generated image" ) review_guidelines = gr.Textbox( label="🔍 Marketing Review Guidelines (Optional)", placeholder="e.g., All text must be in English only, focus on professional appearance, ensure brand colors are prominent", lines=3, info="Provide specific marketing guidelines for review" ) # Advanced settings with gr.Accordion("🔧 Advanced Settings", open=False): max_retries = gr.Slider( minimum=1, maximum=5, value=3, step=1, label="Max Retries", info="Maximum number of retry attempts if quality threshold not met" ) review_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.8, step=0.1, label="Quality Threshold", info="Minimum quality score required for auto-approval" ) # Generate button generate_btn = gr.Button("🚀 Generate Marketing Image", variant="primary", size="lg") # Status gr.Markdown("🔍 **Mode**: Gradio MCP Server") gr.Markdown(f"🔑 **API Status**: {'✅ Configured' if GOOGLE_API_KEY else '❌ No API Key'}") with gr.Column(scale=2): # Results display gr.Markdown("### 🖼️ Generated Image & Review") image_output = gr.Image( label="Generated Marketing Image", type="pil", height=400, show_download_button=True ) review_output = gr.Markdown( value="Click **Generate Marketing Image** to create your marketing image with automated review", label="Marketing Review Results" ) # Suggested prompts section gr.Markdown("---") gr.Markdown("### 💡 Suggested Marketing Prompts") with gr.Row(): with gr.Column(): gr.Markdown("**🏢 Professional/Corporate**") for prompt_name in ["Modern office team collaboration", "Executive boardroom meeting", "Customer service excellence"]: suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name] btn = gr.Button(prompt_name, size="sm") btn.click( fn=lambda p=suggested_prompt, s=suggested_style: (p, s), outputs=[prompt, style] ) with gr.Column(): gr.Markdown("**🎨 Creative/Marketing**") for prompt_name in ["Product showcase display", "Creative workspace design", "Brand presentation setup"]: suggested_prompt, suggested_style = SUGGESTED_PROMPTS[prompt_name] btn = gr.Button(prompt_name, size="sm") btn.click( fn=lambda p=suggested_prompt, s=suggested_style: (p, s), outputs=[prompt, style] ) # Event handlers generate_btn.click( fn=gradio_generate_marketing_image, inputs=[prompt, style, max_retries, review_threshold, review_guidelines], outputs=[image_output, review_output], show_progress=True ) # Footer gr.Markdown(""" ---
🎨 Marketing Image Generator | Gradio MCP Server
Image Generation + Marketing Review + MCP API
📖 Full Documentation & Troubleshooting | MCP Endpoint: /gradio_api/mcp/sse