Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import uuid
|
| 3 |
+
import sys
|
| 4 |
+
import requests
|
| 5 |
+
from peft import *
|
| 6 |
+
import bitsandbytes as bnb
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import transformers
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
from huggingface_hub import notebook_login
|
| 13 |
+
from peft import (
|
| 14 |
+
LoraConfig,
|
| 15 |
+
PeftConfig,
|
| 16 |
+
get_peft_model,
|
| 17 |
+
prepare_model_for_kbit_training,
|
| 18 |
+
)
|
| 19 |
+
from transformers import (
|
| 20 |
+
AutoConfig,
|
| 21 |
+
AutoModelForCausalLM,
|
| 22 |
+
AutoTokenizer,
|
| 23 |
+
BitsAndBytesConfig,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
USER_ICON = "images/user-icon.png"
|
| 28 |
+
AI_ICON = "images/ai-icon.png"
|
| 29 |
+
MAX_HISTORY_LENGTH = 5
|
| 30 |
+
|
| 31 |
+
if 'user_id' in st.session_state:
|
| 32 |
+
user_id = st.session_state['user_id']
|
| 33 |
+
else:
|
| 34 |
+
user_id = str(uuid.uuid4())
|
| 35 |
+
st.session_state['user_id'] = user_id
|
| 36 |
+
|
| 37 |
+
if 'chat_history' not in st.session_state:
|
| 38 |
+
st.session_state['chat_history'] = []
|
| 39 |
+
|
| 40 |
+
if "chats" not in st.session_state:
|
| 41 |
+
st.session_state.chats = [
|
| 42 |
+
{
|
| 43 |
+
'id': 0,
|
| 44 |
+
'question': '',
|
| 45 |
+
'answer': ''
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
if "questions" not in st.session_state:
|
| 50 |
+
st.session_state.questions = []
|
| 51 |
+
|
| 52 |
+
if "answers" not in st.session_state:
|
| 53 |
+
st.session_state.answers = []
|
| 54 |
+
|
| 55 |
+
if "input" not in st.session_state:
|
| 56 |
+
st.session_state.input = ""
|
| 57 |
+
|
| 58 |
+
st.markdown("""
|
| 59 |
+
<style>
|
| 60 |
+
.block-container {
|
| 61 |
+
padding-top: 32px;
|
| 62 |
+
padding-bottom: 32px;
|
| 63 |
+
padding-left: 0;
|
| 64 |
+
padding-right: 0;
|
| 65 |
+
}
|
| 66 |
+
.element-container img {
|
| 67 |
+
background-color: #000000;
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
.main-header {
|
| 71 |
+
font-size: 24px;
|
| 72 |
+
}
|
| 73 |
+
</style>
|
| 74 |
+
""", unsafe_allow_html=True)
|
| 75 |
+
|
| 76 |
+
def write_top_bar():
|
| 77 |
+
col1, col2, col3 = st.columns([1,10,2])
|
| 78 |
+
with col1:
|
| 79 |
+
st.image(AI_ICON, use_column_width='always')
|
| 80 |
+
with col2:
|
| 81 |
+
header = "Cogwise Intelligent Assistant"
|
| 82 |
+
st.write(f"<h3 class='main-header'>{header}</h3>", unsafe_allow_html=True)
|
| 83 |
+
with col3:
|
| 84 |
+
clear = st.button("Clear Chat")
|
| 85 |
+
return clear
|
| 86 |
+
|
| 87 |
+
clear = write_top_bar()
|
| 88 |
+
|
| 89 |
+
if clear:
|
| 90 |
+
st.session_state.questions = []
|
| 91 |
+
st.session_state.answers = []
|
| 92 |
+
st.session_state.input = ""
|
| 93 |
+
st.session_state["chat_history"] = []
|
| 94 |
+
|
| 95 |
+
def handle_input():
|
| 96 |
+
input = st.session_state.input
|
| 97 |
+
question_with_id = {
|
| 98 |
+
'question': input,
|
| 99 |
+
'id': len(st.session_state.questions)
|
| 100 |
+
}
|
| 101 |
+
st.session_state.questions.append(question_with_id)
|
| 102 |
+
|
| 103 |
+
chat_history = st.session_state["chat_history"]
|
| 104 |
+
if len(chat_history) == MAX_HISTORY_LENGTH:
|
| 105 |
+
chat_history = chat_history[:-1]
|
| 106 |
+
|
| 107 |
+
# api_url = "https://9pl792yjf9.execute-api.us-east-1.amazonaws.com/beta/chatcogwise"
|
| 108 |
+
# api_request_data = {"question": input, "session": user_id}
|
| 109 |
+
# api_response = requests.post(api_url, json=api_request_data)
|
| 110 |
+
# result = api_response.json()
|
| 111 |
+
|
| 112 |
+
# answer = result['answer']
|
| 113 |
+
# !pip install -Uqqq pip --progress-bar off
|
| 114 |
+
# !pip install -qqq bitsandbytes == 0.39.0
|
| 115 |
+
# !pip install -qqqtorch --2.0.1 --progress-bar off
|
| 116 |
+
# !pip install -qqq -U git + https://github.com/huggingface/transformers.git@e03a9cc --progress-bar off
|
| 117 |
+
# !pip install -qqq -U git + https://github.com/huggingface/peft.git@42a184f --progress-bar off
|
| 118 |
+
# !pip install -qqq -U git + https://github.com/huggingface/accelerate.git@c9fbb71 --progress-bar off
|
| 119 |
+
# !pip install -qqq datasets == 2.12.0 --progress-bar off
|
| 120 |
+
# !pip install -qqq loralib == 0.1.1 --progress-bar off
|
| 121 |
+
# !pip install einops
|
| 122 |
+
|
| 123 |
+
import os
|
| 124 |
+
# from pprint import pprint
|
| 125 |
+
# import json
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 130 |
+
|
| 131 |
+
# notebook_login()
|
| 132 |
+
# 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
|
| 133 |
+
|
| 134 |
+
# """### Load dataset"""
|
| 135 |
+
|
| 136 |
+
from datasets import load_dataset
|
| 137 |
+
|
| 138 |
+
dataset_name = "nisaar/Lawyer_GPT_India"
|
| 139 |
+
# dataset_name = "patrick11434/TEST_LLM_DATASET"
|
| 140 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 141 |
+
|
| 142 |
+
# """## Load adapters from the Hub
|
| 143 |
+
|
| 144 |
+
# You can also directly load adapters from the Hub using the commands below:
|
| 145 |
+
# """
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# change peft_model_id
|
| 149 |
+
bnb_config = BitsAndBytesConfig(
|
| 150 |
+
load_in_4bit=True,
|
| 151 |
+
load_4bit_use_double_quant=True,
|
| 152 |
+
bnb_4bit_quant_type="nf4",
|
| 153 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
peft_model_id = "nisaar/falcon7b-Indian_Law_150Prompts"
|
| 157 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
| 158 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 159 |
+
config.base_model_name_or_path,
|
| 160 |
+
return_dict=True,
|
| 161 |
+
quantization_config=bnb_config,
|
| 162 |
+
device_map="auto",
|
| 163 |
+
trust_remote_code=True,
|
| 164 |
+
)
|
| 165 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 166 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 167 |
+
|
| 168 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
| 169 |
+
|
| 170 |
+
"""## Inference
|
| 171 |
+
|
| 172 |
+
You can then directly use the trained model or the model that you have loaded from the 🤗 Hub for inference as you would do it usually in `transformers`.
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
generation_config = model.generation_config
|
| 176 |
+
generation_config.max_new_tokens = 200
|
| 177 |
+
generation_config_temperature = 1
|
| 178 |
+
generation_config.top_p = 0.7
|
| 179 |
+
generation_config.num_return_sequences = 1
|
| 180 |
+
generation_config.pad_token_id = tokenizer.eos_token_id
|
| 181 |
+
generation_config_eod_token_id = tokenizer.eos_token_id
|
| 182 |
+
|
| 183 |
+
DEVICE = "cuda:0"
|
| 184 |
+
|
| 185 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 186 |
+
# %%time
|
| 187 |
+
# prompt = f"""
|
| 188 |
+
# <human>: Who appoints the Chief Justice of India?
|
| 189 |
+
# <assistant>:
|
| 190 |
+
# """.strip()
|
| 191 |
+
#
|
| 192 |
+
# encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 193 |
+
# with torch.inference_mode():
|
| 194 |
+
# outputs = model.generate(
|
| 195 |
+
# input_ids=encoding.attention_mask,
|
| 196 |
+
# generation_config=generation_config,
|
| 197 |
+
# )
|
| 198 |
+
# print(tokenizer.decode(outputs[0],skip_special_tokens=True))
|
| 199 |
+
|
| 200 |
+
def generate_response(question: str) -> str:
|
| 201 |
+
prompt = f"""
|
| 202 |
+
<human>: {question}
|
| 203 |
+
<assistant>:
|
| 204 |
+
""".strip()
|
| 205 |
+
encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 206 |
+
with torch.inference_mode():
|
| 207 |
+
outputs = model.generate(
|
| 208 |
+
input_ids=encoding.input_ids,
|
| 209 |
+
attention_mask=encoding.attention_mask,
|
| 210 |
+
generation_config=generation_config,
|
| 211 |
+
)
|
| 212 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 213 |
+
|
| 214 |
+
assistant_start = '<assistant>:'
|
| 215 |
+
response_start = response.find(assistant_start)
|
| 216 |
+
return response[response_start + len(assistant_start):].strip()
|
| 217 |
+
|
| 218 |
+
# prompt = "Debate the merits and demerits of introducing simultaneous elections in India?"
|
| 219 |
+
prompt=input
|
| 220 |
+
answer=print(generate_response(prompt))
|
| 221 |
+
|
| 222 |
+
# answer='Yes'
|
| 223 |
+
chat_history.append((input, answer))
|
| 224 |
+
|
| 225 |
+
st.session_state.answers.append({
|
| 226 |
+
'answer': answer,
|
| 227 |
+
'id': len(st.session_state.questions)
|
| 228 |
+
})
|
| 229 |
+
st.session_state.input = ""
|
| 230 |
+
|
| 231 |
+
def write_user_message(md):
|
| 232 |
+
col1, col2 = st.columns([1,12])
|
| 233 |
+
|
| 234 |
+
with col1:
|
| 235 |
+
st.image(USER_ICON, use_column_width='always')
|
| 236 |
+
with col2:
|
| 237 |
+
st.warning(md['question'])
|
| 238 |
+
|
| 239 |
+
def render_answer(answer):
|
| 240 |
+
col1, col2 = st.columns([1,12])
|
| 241 |
+
with col1:
|
| 242 |
+
st.image(AI_ICON, use_column_width='always')
|
| 243 |
+
with col2:
|
| 244 |
+
st.info(answer)
|
| 245 |
+
|
| 246 |
+
def write_chat_message(md, q):
|
| 247 |
+
chat = st.container()
|
| 248 |
+
with chat:
|
| 249 |
+
render_answer(md['answer'])
|
| 250 |
+
|
| 251 |
+
with st.container():
|
| 252 |
+
for (q, a) in zip(st.session_state.questions, st.session_state.answers):
|
| 253 |
+
write_user_message(q)
|
| 254 |
+
write_chat_message(a, q)
|
| 255 |
+
|
| 256 |
+
st.markdown('---')
|
| 257 |
+
input = st.text_input("You are talking to an AI, ask any question.", key="input", on_change=handle_input)
|