File size: 2,836 Bytes
8fcc055
 
5c8be37
8fcc055
 
 
 
f27161f
5c8be37
 
 
f27161f
911ff06
5c8be37
911ff06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8be37
 
8fcc055
 
911ff06
5c8be37
8fcc055
5c8be37
 
 
 
 
8fcc055
5c8be37
8fcc055
911ff06
5c8be37
8fcc055
 
 
 
 
 
 
 
1e7eb99
 
911ff06
5c8be37
 
 
8fcc055
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# Load the model and tokenizer
model_name = "vennify/t5-base-grammar-correction"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def correct_text(text, max_length, max_new_tokens=0, min_length, num_beams, temperature, top_p):
    inputs = tokenizer.encode(text, return_tensors="pt")
    if max_new_tokens > 0:
        outputs = model.generate(
            inputs,
            max_length=max_length,
            max_new_tokens=max_new_tokens,
            min_length=min_length,
            num_beams=num_beams,
            temperature=temperature,
            top_p=top_p,
            early_stopping=True
        )
    else:
        outputs = model.generate(
            inputs,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            temperature=temperature,
            top_p=top_p,
            early_stopping=True
        )
    corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return corrected_text


def respond(message, history: list[tuple[str, str]], system_message, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
    #messages = [{"role": "system", "content": system_message}]

    #for val in history:
    #    if val[0]:
    #        messages.append({"role": "user", "content": val[0]})
    #    if val[1]:
    #        messages.append({"role": "assistant", "content": val[1]})

    #messages.append({"role": "user", "content": message})

    response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
    yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1,   maximum=2048, value=100,  step=1,    label="Max Length"),
        gr.Slider(minimum=1,   maximum=2048, value=0,    step=1,    label="Min Length"),
        gr.Slider(minimum=1,   maximum=2048, value=0,    step=1,    label="Max New Tokens (optional)"),
        gr.Slider(minimum=1,   maximum=10,   value=5,    step=1,    label="Num Beams"),
        gr.Slider(minimum=0.1, maximum=4.0,  value=0.7,  step=0.1,  label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0,  value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)


if __name__ == "__main__":
    demo.launch()