File size: 5,872 Bytes
0216c0d
d35f312
0216c0d
 
d35f312
0216c0d
 
 
 
 
d35f312
0216c0d
 
d35f312
a0f2ea5
 
 
0216c0d
a0f2ea5
0216c0d
 
a0f2ea5
0216c0d
 
a0f2ea5
d35f312
0216c0d
 
 
 
 
 
 
 
 
 
 
 
d35f312
f0e9ec4
d35f312
0216c0d
 
 
d35f312
0216c0d
 
 
 
 
 
a0f2ea5
0216c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35f312
0216c0d
d35f312
0216c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35f312
 
0216c0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import json
import uuid

import comet_ml
import gradio as gr
import pandas as pd
from PIL import Image
from transformers import CLIPModel, CLIPProcessor

CLIP_MODEL_PATH = "openai/clip-vit-base-patch32"

clip_model = CLIPModel.from_pretrained(CLIP_MODEL_PATH)
clip_processor = CLIPProcessor.from_pretrained(CLIP_MODEL_PATH)

DESCRIPTION = """Glad to see you here πŸ˜„.
You can use this Space to log predictions to [Comet](https://www.comet.ml/site) from Spaces that use Text to Image Diffusion Models.

Keep track of all your prompts and generated images so that you remember the good ones!

Set your Comet credentials in the Comet Settings tab and create an Experiment for logging data.
If you want to continue logging to the same Experiment over multiple sessions, add in the

Then use the path to a Space to generate from in the Diffusion Model tab
"""


def create_experiment(
    comet_api_key,
    comet_workspace,
    comet_project_name,
    comet_experiment_name,
    experiment,
):
    if not comet_api_key:
        experiment = None
        return (
            experiment,
            """
            Please add your API key in order to log your predictions to a Comet Experiment.
            If you don't have a Comet account yet, you can sign up using the link below:

            https://www.comet.ml/signup
            """,
        )

    try:
        api_experiment = comet_ml.APIExperiment(
            api_key=comet_api_key,
            workspace=comet_workspace,
            project_name=comet_project_name,
            experiment_name=comet_experiment_name,
        )
        experiment = {
            "api_key": comet_api_key,
            "workspace": comet_workspace,
            "project_name": comet_project_name,
            "previous_experiment": api_experiment.id,
        }

        return experiment, f"Started {api_experiment.name}. Happy logging!😊"

    except Exception as e:
        return None, e


def get_experiment(kwargs) -> comet_ml.APIExperiment:
    try:
        return comet_ml.APIExperiment(**kwargs)
    except Exception as e:
        return None


def get_experiment_status(experiment_state):
    experiment = get_experiment(experiment_state)
    if experiment is not None:
        name = experiment.name
        return experiment_state, f"Currently logging to: {name}"

    return experiment_state, f"No Experiments found"


def predict(
    model,
    prompt,
    experiment_state,
):
    io = gr.Interface.load(model)
    image = io(prompt)
    pil_image = Image.open(image)

    inputs = clip_processor(
        text=[prompt],
        images=pil_image,
        return_tensors="pt",
        padding=True,
    )
    outputs = clip_model(**inputs)
    clip_score = outputs.logits_per_image.item() / 100.0

    experiment = get_experiment(experiment_state)
    if experiment is not None:
        image_id = uuid.uuid4().hex
        experiment.log_image(image, image_id)

        asset = pd.DataFrame.from_records(
            [
                {
                    "prompt": prompt,
                    "model": model,
                    "clip_model": CLIP_MODEL_PATH,
                    "clip_score": round(clip_score, 3),
                }
            ]
        )
        experiment.log_table(f"{image_id}.json", asset, orient="records")

    return image, experiment_state


def start_interface():
    demo = gr.Blocks()
    with demo:
        description = gr.Markdown(DESCRIPTION)
        with gr.Tabs():
            with gr.TabItem(label="Comet Settings"):
                # credentials
                comet_api_key = gr.Textbox(
                    label="Comet API Key",
                    placeholder="This is required if you'd like to create an Experiment",
                )
                comet_workspace = gr.Textbox(label="Comet Workspace")
                comet_project_name = gr.Textbox(label="Comet Project Name")
                comet_experiment_name = gr.Textbox(
                    label="Comet Experiment Name",
                    placeholder=(
                        "Set this if you'd like"
                        "to continue logging to an existing Experiment",
                    ),
                )

                with gr.Row():
                    start = gr.Button("Create Experiment", variant="primary")
                    status = gr.Button("Experiment Status")

                output = gr.Markdown(label="Status")
                experiment_state = gr.Variable(label="Experiment State")

                start.click(
                    create_experiment,
                    inputs=[
                        comet_api_key,
                        comet_workspace,
                        comet_project_name,
                        comet_experiment_name,
                        experiment_state,
                    ],
                    outputs=[experiment_state, output],
                )

                status.click(
                    get_experiment_status,
                    inputs=[experiment_state],
                    outputs=[experiment_state, output],
                )

            with gr.TabItem(label="Diffusion Model"):
                diff_description = gr.Markdown(
                    """The Model must be a path to any Space that accepts"
                    only text as input and produces an image as an output
                    """
                )
                model = gr.Textbox(label="Model", value="spaces/valhalla/glide-text2im")
                prompt = gr.Textbox(label="Prompt")

                outputs = gr.Image(label="Image")

                submit = gr.Button("Submit", variant="primary")
                submit.click(
                    predict,
                    inputs=[model, prompt, experiment_state],
                    outputs=[outputs, experiment_state],
                )

    demo.launch()


start_interface()