File size: 23,096 Bytes
1f0b3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
from Live_audio import GeminiHandler
import os
import re
from langdetect import detect
import asyncio
import gradio as gr
import google.generativeai as genai
import os
import time
import gradio as gr
from datetime import datetime
import langdetect
import RAG_Domain_know_doc
from web_search import search_autism
from RAG import rag_autism
from openai import OpenAI
from dotenv import load_dotenv
import Old_Document
import User_Specific_Documents
import asyncio
import base64
import time
from io import BytesIO
from dotenv import load_dotenv
load_dotenv()
from google.genai import types
from google.genai.types import (
    LiveConnectConfig,
    SpeechConfig,
    VoiceConfig,
    PrebuiltVoiceConfig,
    Content,
    Part,
)
import gradio as gr
import numpy as np
import websockets
from dotenv import load_dotenv
from fastrtc import (
    AsyncAudioVideoStreamHandler,
    Stream,
    WebRTC,
    get_cloudflare_turn_credentials_async,
    wait_for_item,
)
from google import genai
from gradio.utils import get_space
from PIL import Image

# ------------------------------------------
import asyncio
import base64
import json
import os
import pathlib
import gradio as gr
import google.generativeai as genai
import os
import time
from typing import AsyncGenerator, Literal

import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import (
    AsyncStreamHandler,
    Stream,
    get_cloudflare_turn_credentials_async,
    wait_for_item,
)
from google import genai
from google.genai.types import (
    LiveConnectConfig,
    PrebuiltVoiceConfig,
    SpeechConfig,
    VoiceConfig,
)
from gradio.utils import get_space
from pydantic import BaseModel
# ------------------------------------------------
import os
import gradio as gr
import google.generativeai as genai
import os
import time
import io
import asyncio
from pydub import AudioSegment
DEEPINFRA_API_KEY = "285LUJulGIprqT6hcPhiXtcrphU04FG4"

# Gemini: google-genai
from google import genai
# ---------------------------------------------------
# VAD imports from reference code
import collections
import webrtcvad
import fastrtc
import time

# helper functions

from prompt_template import (
    Prompt_template_translation,
    Prompt_template_LLM_Generation,
    Prompt_template_Reranker,
    Prompt_template_Wisal,
    Prompt_template_Halluciations,
    Prompt_template_paraphrasing,
    Prompt_template_Translate_to_original,
    Prompt_template_relevance,
    Prompt_template_User_document_prompt
)
from query_utils import process_query_for_rewrite, get_non_autism_response

GEMINI_API_KEY="AIzaSyCUCivstFpC9pq_jMHMYdlPrmh9Bx97dFo"

TAVILY_API_KEY="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"

WEAVIATE_URL="yorcqe2sqswhcaivxvt9a.c0.us-west3.gcp.weaviate.cloud"

WEAVIATE_API_KEY="d2d0VGdZQTBmdTFlOWdDZl9tT2h3WDVWd1NpT1dQWHdGK0xjR1hYeWxicUxHVnFRazRUSjY2VlRUVlkwPV92MjAw"

DEEPINFRA_API_KEY="285LUJulGIprqT6hcPhiXtcrphU04FG4"

DEEPINFRA_BASE_URL="https://api.deepinfra.com/v1/openai"
# API Keys and Constants
env = os.getenv("ENVIRONMENT", "production")
openai = OpenAI(
    api_key=DEEPINFRA_API_KEY,
    base_url="https://api.deepinfra.com/v1/openai",
)
SESSION_ID = "default"

pending_clarifications = {}

def call_llm(model: str, messages: list[dict], temperature: float = 0.0, **kwargs) -> str:
    resp = openai.chat.completions.create(
        model=model,
        messages=messages,
        temperature=temperature,
        **kwargs
    )
    return resp.choices[0].message.content.strip()

def is_greeting(text: str) -> bool:
    return bool(re.search(r"\b(hi|hello|hey|good (morning|afternoon|evening))\b", text, re.I))



def process_query(query: str, first_turn: bool = False, session_id: str = "default"):
    intro = ""
    process_log = []

    # Check if user is responding to a clarification prompt
    if session_id in pending_clarifications:
        if query.strip().lower() == "yes":
            corrected_query = pending_clarifications.pop(session_id)
            process_log.append(f"User confirmed: {corrected_query}")
            return process_autism_pipeline(corrected_query, process_log, intro)
        else:
            pending_clarifications.pop(session_id)
            redirect = "Hello I'm Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."
            process_log.append("User rejected clarification.")
            _save_process_log(process_log)
            return redirect

    if first_turn and (not query or query.strip() == ""):
        intro = "Hello! I'm Wisal, an AI assistant developed by Compumacy AI, specializing in Autism Spectrum Disorders. How can I help you today?"
        process_log.append(intro)
        _save_process_log(process_log)
        return intro

    if is_greeting(query):
        greeting = intro + "Hello! I'm Wisal, your AI assistant developed by Compumacy AI. How can I help you today?"
        process_log.append(f"Greeting detected.\n{greeting}")
        _save_process_log(process_log)
        return greeting

    # Process query with the new 3-tuple return
    corrected_query, is_autism_related, rewritten_query = process_query_for_rewrite(query)
    process_log.append(f"Original Query: {query}")
    process_log.append(f"Corrected Query: {corrected_query}")
    process_log.append(f"Relevance Check: {'RELATED' if is_autism_related else 'NOT RELATED'}")
    
    if rewritten_query:
        process_log.append(f"Rewritten Query: {rewritten_query}")

    # If not autism-related, show clarification with rewritten question
    if not is_autism_related:
        redirect_message = "Hello I'm Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."

        clarification = f"""Your query was not clearly related to autism. Do you mean:"{rewritten_query}"?"""

        pending_clarifications[session_id] = rewritten_query
        process_log.append(f"Clarification Prompted: {clarification}")
        _save_process_log(process_log)
        return clarification

    return process_autism_pipeline(query,corrected_query, process_log, intro)

def process_autism_pipeline(query,corrected_query, process_log, intro):
    web_search_resp = asyncio.run(search_autism(corrected_query))
    web_answer = web_search_resp.get("answer", "")
    process_log.append(f"Web Search: {web_answer}")

    gen_prompt = Prompt_template_LLM_Generation.format(new_query=corrected_query)
    generated = call_llm(
        model="Qwen/Qwen3-32B",
        messages=[{"role": "user", "content": gen_prompt}],
        reasoning_effort="none"
    )
    process_log.append(f"LLM Generated: {generated}")

    rag_resp = asyncio.run(rag_autism(corrected_query, top_k=3))
    rag_contexts = rag_resp.get("answer", [])
    process_log.append(f"RAG Contexts: {rag_contexts}")

    answers_list = f"[1] {generated}\n[2] {web_answer}\n" + "\n".join(f"[{i+3}] {c}" for i, c in enumerate(rag_contexts))
    rerank_prompt = Prompt_template_Reranker.format(new_query=corrected_query, answers_list=answers_list)
    reranked = call_llm(
        model="Qwen/Qwen3-32B",
        messages=[{"role": "user", "content": rerank_prompt}],
        reasoning_effort="none"
    )
    process_log.append(f"Reranked: {reranked}")

    wisal_prompt = Prompt_template_Wisal.format(new_query=corrected_query, document=reranked)
    wisal = call_llm(
        model="Qwen/Qwen3-32B",
        messages=[{"role": "user", "content": wisal_prompt}],
        reasoning_effort="none"
    )
    process_log.append(f"Wisal Answer: {wisal}")

    halluc_prompt = Prompt_template_Halluciations.format(
        new_query=corrected_query,
        answer=wisal,
        document=generated
    )
    halluc = call_llm(
        model="Qwen/Qwen3-32B",
        messages=[{"role": "user", "content": halluc_prompt}],
        reasoning_effort="none"
    )
    process_log.append(f"Hallucination Score: {halluc}")
    score = int(halluc.split("Score: ")[-1]) if "Score: " in halluc else 3

    if score in (2, 3):
        paraphrased = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": Prompt_template_paraphrasing.format(document=generated)}],
            reasoning_effort="none"
        )
        wisal = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": Prompt_template_Wisal.format(new_query=corrected_query, document=paraphrased)}],
            reasoning_effort="none"
        )
        process_log.append(f"Paraphrased Wisal: {wisal}")

    try:
        detected_lang = detect(query)
    except:
        detected_lang = "en"
    

    is_english_text = bool(re.fullmatch(r"[A-Za-z0-9 .,?;:'\"!()\-]+", query))

    # Decide whether to translate
    needs_translation = detected_lang != "en" or not is_english_text

    if needs_translation:
        result = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{
                "role": "user",
                "content": Prompt_template_Translate_to_original.format(query=query, document=wisal)
            }],
            reasoning_effort="none"
        )
        process_log.append(f"Translated Back: {result}")
    else:
        result = wisal
        process_log.append(f"Final Result: {result}")
    rtl_languages = ["ar", "fa", "ur", "he"]  # Arabic, Persian, Urdu, Hebrew
    text_dir = "rtl" if detected_lang in rtl_languages else "ltr"
    # Wrap result in direction-aware HTML
    wrapped_result = f'<div dir="{text_dir}">{result}</div>'
    _save_process_log(process_log)
    return intro + wrapped_result

                



def _save_process_log(log_lines, filename="process_output.txt"):
    import datetime
    logs_dir = os.path.join(os.path.dirname(__file__), "logs")
    os.makedirs(logs_dir, exist_ok=True)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
    with open(log_filename, "w", encoding="utf-8") as f:
        for line in log_lines:
            f.write(str(line) + "\n\n")

def _save_process_log(log_lines, filename="process_output.txt"):
    import datetime
    import os
    # Ensure logs directory exists
    logs_dir = os.path.join(os.path.dirname(__file__), "logs")
    os.makedirs(logs_dir, exist_ok=True)
    # Unique filename per question (timestamped)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
    try:
        with open(log_filename, "w", encoding="utf-8") as f:
            for line in log_lines:
                f.write(str(line) + "\n\n")
    except Exception as e:
        pass


# Gradio UI for main pipeline, RAG_Domain_know_doc, and User_Specific_Documents , Old_Document
def main_pipeline_interface(query):
    return process_query(query, first_turn=True)

def main_pipeline_with_doc_and_history(query, doc_file, doc_type, history):
    response = main_pipeline_with_doc(query, doc_file, doc_type)
    updated_history = history + f"\nUser: {query}\nWisal: {response}\n"
    return response, updated_history

def main_pipeline_with_doc(query, doc_file, doc_type):
    # If no document, use main pipeline
    if doc_file is None or doc_type == "None":
        return process_query(query, first_turn=True)

    safe_filename = os.path.basename(getattr(doc_file, 'name', str(doc_file)))
    upload_dir = os.path.join(os.path.dirname(__file__), "uploaded_docs")
    os.makedirs(upload_dir, exist_ok=True)

    save_path = os.path.join(upload_dir, safe_filename)

    # 💡 Check if doc_file is file-like (has `.read()`) or path-like (str or NamedString)
    if hasattr(doc_file, 'read'):
        # File-like object
        file_bytes = doc_file.read()
    else:
        # It's a path (NamedString), read from file path
        with open(str(doc_file), 'rb') as f:
            file_bytes = f.read()

    # Save the file content
    with open(save_path, "wb") as f:
        f.write(file_bytes)


    # Route to correct document handler
    if doc_type == "Knowledge Document":
        status = RAG_Domain_know_doc.ingest_file(save_path)
        answer = RAG_Domain_know_doc.answer_question(query)
        return f"[Knowledge Document Uploaded]\n{status}\n\n{answer}"
    elif doc_type == "User-Specific Document":
        status = User_Specific_Documents.ingest_file(save_path)
        answer = User_Specific_Documents.answer_question(query)
        return f"[User-Specific Document Uploaded]\n{status}\n\n{answer}"
    elif doc_type == "Old Document":
        status = Old_Document.ingest_file(save_path)
        answer = Old_Document.answer_question(query)
        return f"[Old Document Uploaded]\n{status}\n\n{answer}"
    elif doc_type == "New Documrnt":
        status = User_Specific_Documents.ingest_file(save_path)
        answer = User_Specific_Documents.answer_question(query)
        return f"[New Documrnt]\n{status}\n\n{answer}"
        
    else:
        return "Invalid document type."
    
def pipeline_with_history(message, doc_file, doc_type, history):
    if not message.strip():
        return history, ""
    response = main_pipeline_with_doc(message, doc_file, doc_type)
    history = history + [[message, response]]
    return history, ""

import gradio as gr
import google.generativeai as genai
import os
import time

# Function to transcribe audio
def transcribe_audio(audio_filepath):
    api_key = "AIzaSyC68cQzvDYEnas6u-5ABgbOSeJLmIKKpP8"  
    if audio_filepath is None:
        return "No audio provided. Please record or upload an audio file first."
    if not api_key:
        return "API Key is missing. Please provide your Google AI API key."
    try:
        genai.configure(api_key=api_key) 

        model = genai.GenerativeModel(model_name="models/gemini-2.0-flash")  # Get the model you want to use

        print(f"Transcribing audio file: {audio_filepath}")
        yield "Uploading audio file..."
        
        # Upload the audio file
        audio_file = genai.upload_file(path=audio_filepath)
        
        # Check the processing status of the uploaded file
        while audio_file.state.name == "PROCESSING":
            time.sleep(2)  # Wait for 2 seconds before checking again
            audio_file = genai.get_file(audio_file.name)

        if audio_file.state.name == "FAILED":
            return "[ERROR] Audio file processing failed."

        yield "Audio uploaded. Transcribing..."
        
        # Request transcription from the model
        response = model.generate_content(
            ["Please transcribe this audio recording.", audio_file],
            request_options={"timeout": 120}  # Set a timeout for the request
        )

        query = response.text if response and response.text else "Transcription failed. The response was empty."
        yield query
    except Exception as e:
        print(f"An error occurred during transcription: {e}")
        yield f"[ERROR] An unexpected error occurred: {e}"

def unified_handler(user_text, audio_file, chat_history):
    chat_history = chat_history or []
    msg_from_user = None

    if user_text and user_text.strip():
        msg_from_user = user_text
    elif audio_file:
        transcription = None
        gen = transcribe_audio(audio_file)
        try:
            while True:
                out = next(gen)
                # Optional: Show progress in chat, if you want
                if not out.startswith("[ERROR]"):
                    last_out = out
        except StopIteration as e:
            # If generator returns a value, it's in e.value
            transcription = e.value if e.value else last_out
        if transcription:
            msg_from_user = transcription

    if msg_from_user:
        chat_history.append(("User", msg_from_user))
        wisal_reply = process_query(msg_from_user)
        chat_history.append(("Wisal", wisal_reply))
        return chat_history, "", None

    return chat_history, "", None


import gradio as gr
import asyncio

# Your process_query, transcribe_audio, and text_to_speech_ui functions should exist.

def wisal_handler(user_text, audio_file, chat_history):
    # If user typed a message
    if user_text and user_text.strip():
        chat_history = chat_history or []
        response = process_query(user_text)
        chat_history.append(("User", user_text))
        chat_history.append(("Wisal", response))
        return chat_history, "", None  # Clear input box

    # If user provided audio
    if audio_file:
        transcription = None
        gen = transcribe_audio(audio_file)
        for out in gen:
            if isinstance(out, str) and out.startswith("Uploading"):
                continue
            if isinstance(out, str) and not out.startswith("[ERROR]"):
                transcription = out
            if isinstance(out, str) and out.startswith("[ERROR]"):
                chat_history.append(("System", out))
                return chat_history, "", None
        if transcription:
            chat_history.append(("User", transcription))   # Show transcription!
            wisal_reply = process_query(transcription)
            chat_history.append(("Wisal", wisal_reply))
            return chat_history, "", None


    return chat_history, "", None  # Nothing sent


# Make sure to escape backslashes in the file path (use raw strings or forward slashes)
image_path = r"C:\Users\Fouda\OneDrive\Desktop\Aya\Compumacy-Logo-Trans2.png"  # Using a raw string

with gr.Blocks(title="Wisal Chatbot", theme='Yntec/HaleyCH_Theme_craiyon_alt') as demo:
    chat_history = gr.State([])

    # Add Image (local path)
    with gr.Row():
        gr.Image(value=image_path, show_label=False, container=False, height=100)

    gr.Markdown("# 🤖 Wisal: Autism AI Assistant")

    gr.CheckboxGroup(["Doctor", "Patient"], label="Checkbox Group")
    chatbot = gr.Chatbot(label="Wisal Chat", height=500)
    with gr.Row():
        user_input = gr.Textbox(placeholder="Type your question here...", label="", lines=1)
        audio_input = gr.Audio(
            sources=["microphone", "upload"],
            type="filepath",
            label="Record or Upload Audio"
        )
        send_btn = gr.Button("Send", variant="primary")
        

    send_btn.click(
        fn=wisal_handler,
        inputs=[user_input, audio_input, chat_history],
        outputs=[chatbot, user_input, audio_input],
    )

    with gr.Row():
        audio_output = gr.Audio(label="TTS Audio Output", interactive=True)
        send_btn.click(
            fn=wisal_handler,
            inputs=[user_input, audio_input, chat_history],
            outputs=[chatbot, user_input, audio_output],
            api_name="wisal_handler"
        )


    with gr.Row() as row2:
        with gr.Column():
            webrtc2 = WebRTC(
                label="Live Chat",
                modality="audio",
                mode="send-receive",
                elem_id="audio-source",
                rtc_configuration=get_cloudflare_turn_credentials_async,
                icon="https://www.gstatic.com/lamda/images/gemini_favicon_f069958c85030456e93de685481c559f160ea06b.png",
                pulse_color="rgb(255, 255, 255)",
                icon_button_color="rgb(255, 255, 255)",
            )
            webrtc2.stream(
                GeminiHandler(),
                inputs=[webrtc2],
                outputs=[webrtc2],
                time_limit=180 if get_space() else None,
                concurrency_limit=2 if get_space() else None,
            )

    doc_file = gr.File(label="📎 Upload Document (PDF, DOCX, TXT)", file_types=[".pdf", ".docx", ".txt"])

    doc_type = gr.Radio(
        ["None", "Knowledge Document", "User-Specific Document"],
        value="None",
        label="Document Type"
    )

    user_doc_option = gr.Radio(
        ["New Document", "Old Document"],
        label="Select User Document Type",
        visible=False
    )

    def toggle_user_doc_visibility(selected_type):
        return gr.update(visible=(selected_type == "User-Specific Document"))

    doc_type.change(
        toggle_user_doc_visibility,
        inputs=doc_type,
        outputs=user_doc_option
    )

    send_btn.click(
        fn=pipeline_with_history,
        inputs=[user_input, doc_file, doc_type, chatbot],
        outputs=[chatbot, user_input]
    )

    clear_btn = gr.Button("Clear Chat", elem_id="clear-button")
    clear_btn.click(lambda: [], outputs=[chatbot])

    # Add custom theme CSS to the app
    theme_css = """
    /* Logo Row */
    #logo-row {
        display: flex;
        justify-content: center;
        align-items: center;
        padding: 1rem;
        background-color: #222222; /* Dark gray background for the logo row */
    }

    #logo-row img {
        max-width: 300px;
        object-fit: contain;
    }

    /* Send Button */
    #send-button {
        background-color: #f44336; en color for the Send button */
        color: white;
        font-size: 16px;
        padding: 10px 24px;
        border: none;
        border-radius: 5px;
        cursor: pointer;
    }

    #send-button:hover {
        background-color:  #e53935;
    }

    /* Clear Button */
    #clear-button {
        background-color: #f44336; /* Red color for the Clear button */
        color: white;
        font-size: 16px;
        padding: 10px 24px;
        border: none;
        border-radius: 5px;
        cursor: pointer;
    }

    #clear-button:hover {
        background-color: #e53935; /* Darker red on hover */
    }

    /* Main Container Background */
    .gradio-container {
        background-color: #2C2C2C; /* Dark background color */
        padding: 20px;
        color: white;
    }

    /* Saved State Item */
    .saved-state-item {
        padding: 10px;
        margin: 5px 0;
        border-radius: 5px;
        background-color: #333333; /* Dark gray background for saved state items */
        color: #ffffff; /* White text color */
        cursor: pointer;
        transition: background-color 0.2s;
        border: 1px solid #444444;
    }

    .saved-state-item:hover {
        background-color: #444444; /* Slightly lighter gray on hover */
    }

    /* Delete Button */
    .delete-button {
        color: #ff6b6b; /* Red color for delete button */
        margin-left: 10px;
        float: right;
        font-weight: bold;
    }

    /* Filesystem Sessions Container */
    .filesystem-sessions-container {
        max-height: 400px;
        overflow-y: auto;
        padding: 5px;
        border: 1px solid #444;
        border-radius: 5px;
        background-color: #222222; /* Dark background for the session container */
    }

    /* Highlight effect when clicking */
    .saved-state-item:active {
        background-color: #555555; /* Darker gray when clicking */
    }
"""


    demo.css = theme_css

if __name__ == "__main__":
    demo.launch(debug=True)