File size: 12,850 Bytes
ea1e6bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""
Utility functions for query processing and rewriting.
"""
import time
import logging
from openai import OpenAI
from prompt_template import (
    Prompt_template_translation, 
    Prompt_template_relevance,
    Prompt_template_autism_confidence,
    Prompt_template_autism_rewriter,
    Prompt_template_answer_autism_relevance
)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize OpenAI client
DEEPINFRA_API_KEY = "285LUJulGIprqT6hcPhiXtcrphU04FG4"
openai = OpenAI(
    api_key=DEEPINFRA_API_KEY,
    base_url="https://api.deepinfra.com/v1/openai",
)

def call_llm(model: str, messages: list[dict], temperature: float = 0.0, timeout: int = 30, **kwargs) -> str:
    """Call the LLM with given messages and return the response."""
    try:
        logger.info(f"Making API call to {model} with timeout {timeout}s")
        start_time = time.time()
        
        resp = openai.chat.completions.create(
            model=model,
            messages=messages,
            temperature=temperature,
            timeout=timeout,
            **kwargs
        )
        
        elapsed = time.time() - start_time
        logger.info(f"API call completed in {elapsed:.2f}s")
        
        return resp.choices[0].message.content.strip()
        
    except Exception as e:
        logger.error(f"API call failed: {e}")
        # Return fallback response
        if "translation" in str(messages).lower():
            # For translation, return the original query
            return messages[0]["content"].split("Query: ")[-1] if "Query: " in messages[0]["content"] else "Error"
        else:
            # For relevance, assume not related
            return "0"

def enhanced_autism_relevance_check(query: str) -> dict:
    """
    Enhanced autism relevance checking with detailed analysis.
    Returns a dictionary with score, category, and reasoning.
    """
    try:
        logger.info(f"Enhanced autism relevance check for: '{query[:50]}...'")
        
        # Use the enhanced confidence prompt
        confidence_prompt = Prompt_template_autism_confidence.format(query=query)
        response = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": confidence_prompt}],
            reasoning_effort="none",
            timeout=15
        )
        
        # Extract numeric score
        confidence_score = 0
        try:
            import re
            numbers = re.findall(r'\d+', response)
            if numbers:
                confidence_score = int(numbers[0])
                confidence_score = max(0, min(100, confidence_score))
        except:
            confidence_score = 0
        
        # Determine category and action based on enhanced scoring
        if confidence_score >= 85:
            category = "directly_autism_related"
            action = "accept_as_is"
            reasoning = "Directly mentions autism or autism-specific topics"
        elif confidence_score >= 70:
            category = "highly_autism_relevant"
            action = "accept_as_is"
            reasoning = "Core autism symptoms or characteristics"
        elif confidence_score >= 55:
            category = "significantly_autism_relevant"
            action = "rewrite_for_autism"
            reasoning = "Common comorbidity or autism-related issue"
        elif confidence_score >= 40:
            category = "moderately_autism_relevant"
            action = "rewrite_for_autism"
            reasoning = "Broader developmental or family concern related to autism"
        elif confidence_score >= 25:
            category = "somewhat_autism_relevant"
            action = "conditional_rewrite"
            reasoning = "General topic with potential autism applications"
        else:
            category = "not_autism_relevant"
            action = "reject"
            reasoning = "Not related to autism or autism care"
        
        result = {
            "score": confidence_score,
            "category": category,
            "action": action,
            "reasoning": reasoning
        }
        
        logger.info(f"Enhanced relevance result: {result}")
        return result
        
    except Exception as e:
        logger.error(f"Error in enhanced_autism_relevance_check: {e}")
        return {
            "score": 0,
            "category": "error",
            "action": "reject",
            "reasoning": "Error during processing"
        }

def check_autism_confidence(query: str) -> int:
    """
    Check autism relevance confidence score (0-100).
    Returns the confidence score as an integer.
    """
    try:
        logger.info(f"Checking autism confidence for query: '{query[:50]}...'")
        
        confidence_prompt = Prompt_template_autism_confidence.format(query=query)
        response = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": confidence_prompt}],
            reasoning_effort="none",
            timeout=15
        )
        
        # Extract numeric score from response
        confidence_score = 0
        try:
            # Try to extract number from response
            import re
            numbers = re.findall(r'\d+', response)
            if numbers:
                confidence_score = int(numbers[0])
                # Ensure it's within valid range
                confidence_score = max(0, min(100, confidence_score))
            else:
                logger.warning(f"No numeric score found in response: {response}")
                confidence_score = 0
        except:
            logger.error(f"Failed to parse confidence score from: {response}")
            confidence_score = 0
            
        logger.info(f"Autism confidence score: {confidence_score}")
        return confidence_score
        
    except Exception as e:
        logger.error(f"Error in check_autism_confidence: {e}")
        return 0

def rewrite_query_for_autism(query: str) -> str:
    """
    Automatically rewrite a query to be autism-specific.
    """
    try:
        logger.info(f"Rewriting query for autism: '{query[:50]}...'")
        
        rewrite_prompt = Prompt_template_autism_rewriter.format(query=query)
        rewritten_query = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": rewrite_prompt}],
            reasoning_effort="none",
            timeout=15
        )
        
        if rewritten_query == "Error" or len(rewritten_query.strip()) == 0:
            logger.warning("Rewriting failed, using fallback")
            rewritten_query = f"How does autism relate to {query.lower()}?"
        else:
            rewritten_query = rewritten_query.strip()
            
        logger.info(f"Query rewritten to: '{rewritten_query[:50]}...'")
        return rewritten_query
        
    except Exception as e:
        logger.error(f"Error in rewrite_query_for_autism: {e}")
        return f"How does autism relate to {query.lower()}?"

def check_answer_autism_relevance(answer: str) -> int:
    """
    Check if an answer is sufficiently related to autism (0-100 score).
    Used for document-based queries to filter non-autism answers.
    """
    try:
        logger.info(f"Checking answer autism relevance for: '{answer[:50]}...'")
        
        relevance_prompt = Prompt_template_answer_autism_relevance.format(answer=answer)
        response = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": relevance_prompt}],
            reasoning_effort="none",
            timeout=15
        )
        
        # Extract numeric score from response
        relevance_score = 0
        try:
            import re
            numbers = re.findall(r'\d+', response)
            if numbers:
                relevance_score = int(numbers[0])
                relevance_score = max(0, min(100, relevance_score))
            else:
                logger.warning(f"No numeric score found in response: {response}")
                relevance_score = 0
        except:
            logger.error(f"Failed to parse relevance score from: {response}")
            relevance_score = 0
            
        logger.info(f"Answer autism relevance score: {relevance_score}")
        return relevance_score
        
    except Exception as e:
        logger.error(f"Error in check_answer_autism_relevance: {e}")
        return 0

def process_query_for_rewrite(query: str) -> tuple[str, bool, str]:
    """
    Enhanced query processing with sophisticated autism relevance detection.
    
    NEW ENHANCED LOGIC:
    1. Score 85-100 → Directly autism-related, use as-is
    2. Score 70-84 → Highly autism-relevant (core symptoms), use as-is  
    3. Score 55-69 → Significantly autism-relevant (comorbidities), rewrite for autism
    4. Score 40-54 → Moderately autism-relevant, rewrite for autism
    5. Score 25-39 → Somewhat relevant, conditional rewrite (ask user or auto-rewrite)
    6. Score 0-24 → Not autism-related, reject
    
    Returns: (processed_query, is_autism_related, rewritten_query_if_needed)
    """
    try:
        logger.info(f"Processing query with enhanced confidence logic: '{query[:50]}...'")
        start_time = time.time()
        
        # Step 1: Translate and correct the query
        logger.info("Step 1: Translating/correcting query")
        corrected_query = call_llm(
            model="Qwen/Qwen3-32B",
            messages=[{"role": "user", "content": Prompt_template_translation.format(query=query)}],
            reasoning_effort="none",
            timeout=15
        )
        
        if corrected_query == "Error":
            logger.warning("Translation failed, using original query")
            corrected_query = query
        
        # Step 2: Get enhanced autism relevance analysis
        logger.info("Step 2: Enhanced autism relevance checking")
        relevance_result = enhanced_autism_relevance_check(corrected_query)
        
        confidence_score = relevance_result["score"]
        action = relevance_result["action"]
        reasoning = relevance_result["reasoning"]
        
        logger.info(f"Relevance analysis: {confidence_score}% - {reasoning}")
        
        # Step 3: Take action based on enhanced analysis
        if action == "accept_as_is":
            logger.info(f"High relevance ({confidence_score}%) - accepting as-is: {reasoning}")
            return corrected_query, True, ""
            
        elif action == "rewrite_for_autism":
            logger.info(f"Moderate relevance ({confidence_score}%) - rewriting for autism: {reasoning}")
            rewritten_query = rewrite_query_for_autism(corrected_query)
            return rewritten_query, True, ""
            
        elif action == "conditional_rewrite":
            # For somewhat relevant queries, automatically rewrite (could be enhanced with user confirmation)
            logger.info(f"Low-moderate relevance ({confidence_score}%) - conditionally rewriting: {reasoning}")
            rewritten_query = rewrite_query_for_autism(corrected_query)
            return rewritten_query, True, ""
            
        else:  # action == "reject"
            logger.info(f"Low relevance ({confidence_score}%) - rejecting: {reasoning}")
            return corrected_query, False, ""
        
        elapsed = time.time() - start_time
        logger.info(f"Enhanced query processing completed in {elapsed:.2f}s")
        
    except Exception as e:
        logger.error(f"Error in process_query_for_rewrite: {e}")
        # Fallback: return original query as not autism-related
        return query, False, ""

def get_non_autism_response() -> str:
    """Return a more human-like response for non-autism queries."""
    return ("Hi there! I appreciate you reaching out to me. I'm Wisal, and I specialize specifically in autism and Autism Spectrum Disorders. "
            "I noticed your question isn't quite related to autism topics. I'd love to help you, but I'm most effective when answering "
            "questions about autism, ASD, autism support strategies, therapies, or related concerns.\n\n"
            "Could you try asking me something about autism instead? I'm here and ready to help with any autism-related questions you might have! 😊")

def get_non_autism_answer_response() -> str:
    """Return a more human-like response when document answers are not autism-related."""
    return ("I'm sorry, but the information I found in the document doesn't seem to be related to autism or Autism Spectrum Disorders. "
            "Since I'm Wisal, your autism specialist, I want to make sure I'm providing you with relevant, autism-focused information. "
            "Could you try asking a question that's more specifically about autism? I'm here to help with any autism-related topics! 😊")