File size: 6,927 Bytes
f23dbc8 21e5d2f f23dbc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Import python lib
import streamlit as st
import time
import pandas as pd
import numpy as np
from surprise import Dataset, Reader
from surprise import KNNBaseline
# Import wine dataframes
df_wine_model = pd.read_pickle('./data/df_wine_us_rate.pkl')
df_wine_combi = pd.read_pickle('./data/df_wine_combi.pkl')
# Instantiate the list of wine traits
all_traits = ['almond', 'anise', 'apple', 'apricot', 'baked', 'baking_spices', 'berry', 'black_cherry', 'black_currant', 'black_pepper', 'black_tea', 'blackberry', 'blueberry',
'boysenberry', 'bramble', 'bright', 'butter', 'candy', 'caramel', 'cardamom', 'cassis', 'cedar', 'chalk', 'cherry', 'chocolate', 'cinnamon', 'citrus', 'clean', 'closed',
'clove', 'cocoa', 'coffee', 'cola', 'complex', 'concentrated', 'cranberry', 'cream', 'crisp', 'dark', 'dark_chocolate', 'dense', 'depth', 'dried_herb', 'dry', 'dust',
'earth', 'edgy', 'elderberry', 'elegant', 'fennel', 'firm', 'flower', 'forest_floor', 'french_oak', 'fresh', 'fruit', 'full_bodied', 'game', 'grapefruit', 'graphite',
'green', 'gripping', 'grippy', 'hearty', 'herb', 'honey', 'honeysuckle', 'jam', 'juicy', 'lavender', 'leafy', 'lean', 'leather', 'lemon', 'lemon_peel', 'length', 'licorice',
'light_bodied', 'lime', 'lush', 'meaty', 'medium_bodied', 'melon', 'milk_chocolate', 'minerality', 'mint', 'nutmeg', 'oak', 'olive', 'orange', 'orange_peel', 'peach',
'pear', 'pencil_lead', 'pepper', 'pine', 'pineapple', 'plum', 'plush', 'polished', 'pomegranate', 'powerful', 'purple', 'purple_flower', 'raspberry', 'refreshing',
'restrained', 'rich', 'ripe', 'robust', 'rose', 'round', 'sage', 'salt', 'savory', 'sharp', 'silky', 'smoke', 'smoked_meat', 'smooth', 'soft', 'sparkling', 'spice',
'steel', 'stone', 'strawberry', 'succulent', 'supple', 'sweet', 'tangy', 'tannin', 'tar', 'tart', 'tea', 'thick', 'thyme', 'tight', 'toast', 'tobacco', 'tropical_fruit',
'vanilla', 'velvety', 'vibrant', 'violet', 'warm', 'weight', 'wet_rocks', 'white', 'white_pepper', 'wood']
#---------------------------------------------------------------------------------------------------------
# Function to instantiate the model & return the est recsys scores
def recommend_scores():
# Instantiate reader & data for surprise
reader = Reader(rating_scale=(88, 100))
data = Dataset.load_from_df(df_wine_model, reader)
# Instantiate recsys model
sim_options={'name':'cosine'}
model = KNNBaseline(k=35, min_k=1, sim_options=sim_options, verbose=False)
# Train & fit the data into model
train=data.build_full_trainset()
model.fit(train)
# Start the model to compute the best estimate match score on wine list
recommend_list = []
user_wines = df_wine_model[df_wine_model.taster_name == 'mockuser']['title'].unique()
not_user_wines = []
for wine in df_wine_model['title'].unique():
if wine not in user_wines:
not_user_wines.append(wine)
for wine in not_user_wines:
wine_compatibility = []
prediction = model.predict(uid='mockuser', iid=wine)
wine_compatibility.append(prediction.iid)
wine_compatibility.append(prediction.est)
recommend_list.append(wine_compatibility)
result_df = pd.DataFrame(recommend_list, columns = ['title', 'est_match_pts'])
return result_df
def add_bg_from_url():
st.markdown(
f"""
<style>
[data-testid="stAppViewContainer"] {{
background-image: url("https://www.ackerwines.com/wp-content/uploads/2021/09/Montrose4.jpg");
background-attachment: fixed;
background-size: cover
}}
[data-testid="stVerticalBlock"] {{
background-color: rgba(255,255,255,0.75)
}}
</style>
""",
unsafe_allow_html=True
)
#----------------------------------------------------------------------------------------------------------
st.title("Which wine should I get?")
st.text("")
st.write("You can type the wine traits that you want in the dropdown list below")
add_bg_from_url()
select_temptrait = st.multiselect('Choose the traits that you want in your wine', options = all_traits)
if st.button('Show me the wines!'):
with st.spinner('Should you have some wine now?'):
time.sleep(2)
# Instantiate selected wine traits
if len(select_temptrait) == 0:
selected_traits = all_traits
else:
selected_traits = select_temptrait
# Run recommender model
recommend_df = recommend_scores()
# Instantiate traits filter
trait_filter = ['title']
# Add on any traits selected by user
trait_filter.extend(selected_traits)
# Create dataframe for wine name and traits
df_temp_traits = df_wine_combi.drop(columns=['taster_name', 'points', 'variety', 'designation', 'winery', 'country', 'province', 'region_1', 'region_2', 'price', 'description',
'desc_wd_count', 'traits'])
# Code to start filtering out wines with either one of the selected traits
df_temp_traits = df_temp_traits[trait_filter]
df_temp_traits['sum'] = df_temp_traits.sum(axis=1, numeric_only=True)
df_temp_traits = df_temp_traits[df_temp_traits['sum'] != 0]
# Merge the selected wines traits with recommend scores
df_selectrec_temp = df_temp_traits.merge(recommend_df, on='title', how='left')
# Merge the selected wines with recommendations with df on details
df_selectrec_detail = df_selectrec_temp.merge(df_wine_combi, on='title', how='left')
df_selectrec_detail.drop_duplicates(inplace=True)
# Pull out the top 10 recommendations (raw)
df_rec_raw = df_selectrec_detail.sort_values('est_match_pts', ascending=False).head(10)
# Prepare the display for the top 10 recommendations
df_rec_final = df_rec_raw[['title', 'country', 'province', 'variety', 'winery', 'points', 'price', 'traits', 'description']].reset_index(drop=True)
df_rec_final.index = df_rec_final.index + 1
df_rec_final['traits']=df_rec_final['traits'].str.replace(" ", " | ")
df_rec_final.rename(columns={'title':'Name',
'country':'Country',
'province':'State/Province',
'variety':'Type',
'winery':'Winery',
'points':'Rating',
'price':'Price',
'description':'Review',
'traits':'Key Traits'}, inplace=True)
st.balloons()
st.dataframe(df_rec_final)
|