# Import python lib import streamlit as st import time import pandas as pd import numpy as np from surprise import Dataset, Reader from surprise import KNNBaseline # Import wine dataframes df_wine_model = pd.read_pickle('./data/df_wine_us_rate.pkl') df_wine_combi = pd.read_pickle('./data/df_wine_combi.pkl') # Instantiate the list of wine traits all_traits = ['almond', 'anise', 'apple', 'apricot', 'baked', 'baking_spices', 'berry', 'black_cherry', 'black_currant', 'black_pepper', 'black_tea', 'blackberry', 'blueberry', 'boysenberry', 'bramble', 'bright', 'butter', 'candy', 'caramel', 'cardamom', 'cassis', 'cedar', 'chalk', 'cherry', 'chocolate', 'cinnamon', 'citrus', 'clean', 'closed', 'clove', 'cocoa', 'coffee', 'cola', 'complex', 'concentrated', 'cranberry', 'cream', 'crisp', 'dark', 'dark_chocolate', 'dense', 'depth', 'dried_herb', 'dry', 'dust', 'earth', 'edgy', 'elderberry', 'elegant', 'fennel', 'firm', 'flower', 'forest_floor', 'french_oak', 'fresh', 'fruit', 'full_bodied', 'game', 'grapefruit', 'graphite', 'green', 'gripping', 'grippy', 'hearty', 'herb', 'honey', 'honeysuckle', 'jam', 'juicy', 'lavender', 'leafy', 'lean', 'leather', 'lemon', 'lemon_peel', 'length', 'licorice', 'light_bodied', 'lime', 'lush', 'meaty', 'medium_bodied', 'melon', 'milk_chocolate', 'minerality', 'mint', 'nutmeg', 'oak', 'olive', 'orange', 'orange_peel', 'peach', 'pear', 'pencil_lead', 'pepper', 'pine', 'pineapple', 'plum', 'plush', 'polished', 'pomegranate', 'powerful', 'purple', 'purple_flower', 'raspberry', 'refreshing', 'restrained', 'rich', 'ripe', 'robust', 'rose', 'round', 'sage', 'salt', 'savory', 'sharp', 'silky', 'smoke', 'smoked_meat', 'smooth', 'soft', 'sparkling', 'spice', 'steel', 'stone', 'strawberry', 'succulent', 'supple', 'sweet', 'tangy', 'tannin', 'tar', 'tart', 'tea', 'thick', 'thyme', 'tight', 'toast', 'tobacco', 'tropical_fruit', 'vanilla', 'velvety', 'vibrant', 'violet', 'warm', 'weight', 'wet_rocks', 'white', 'white_pepper', 'wood'] #--------------------------------------------------------------------------------------------------------- # Function to instantiate the model & return the est recsys scores def recommend_scores(): # Instantiate reader & data for surprise reader = Reader(rating_scale=(88, 100)) data = Dataset.load_from_df(df_wine_model, reader) # Instantiate recsys model sim_options={'name':'cosine'} model = KNNBaseline(k=35, min_k=1, sim_options=sim_options, verbose=False) # Train & fit the data into model train=data.build_full_trainset() model.fit(train) # Start the model to compute the best estimate match score on wine list recommend_list = [] user_wines = df_wine_model[df_wine_model.taster_name == 'mockuser']['title'].unique() not_user_wines = [] for wine in df_wine_model['title'].unique(): if wine not in user_wines: not_user_wines.append(wine) for wine in not_user_wines: wine_compatibility = [] prediction = model.predict(uid='mockuser', iid=wine) wine_compatibility.append(prediction.iid) wine_compatibility.append(prediction.est) recommend_list.append(wine_compatibility) result_df = pd.DataFrame(recommend_list, columns = ['title', 'est_match_pts']) return result_df def add_bg_from_url(): st.markdown( f""" """, unsafe_allow_html=True ) #---------------------------------------------------------------------------------------------------------- st.title("Which wine should I get?") st.text("") st.write("You can type the wine traits that you want in the dropdown list below") add_bg_from_url() select_temptrait = st.multiselect('Choose the traits that you want in your wine', options = all_traits) if st.button('Show me the wines!'): with st.spinner('Should you have some wine now?'): time.sleep(2) # Instantiate selected wine traits if len(select_temptrait) == 0: selected_traits = all_traits else: selected_traits = select_temptrait # Run recommender model recommend_df = recommend_scores() # Instantiate traits filter trait_filter = ['title'] # Add on any traits selected by user trait_filter.extend(selected_traits) # Create dataframe for wine name and traits df_temp_traits = df_wine_combi.drop(columns=['taster_name', 'points', 'variety', 'designation', 'winery', 'country', 'province', 'region_1', 'region_2', 'price', 'description', 'desc_wd_count', 'traits']) # Code to start filtering out wines with either one of the selected traits df_temp_traits = df_temp_traits[trait_filter] df_temp_traits['sum'] = df_temp_traits.sum(axis=1, numeric_only=True) df_temp_traits = df_temp_traits[df_temp_traits['sum'] != 0] # Merge the selected wines traits with recommend scores df_selectrec_temp = df_temp_traits.merge(recommend_df, on='title', how='left') # Merge the selected wines with recommendations with df on details df_selectrec_detail = df_selectrec_temp.merge(df_wine_combi, on='title', how='left') df_selectrec_detail.drop_duplicates(inplace=True) # Pull out the top 10 recommendations (raw) df_rec_raw = df_selectrec_detail.sort_values('est_match_pts', ascending=False).head(10) # Prepare the display for the top 10 recommendations df_rec_final = df_rec_raw[['title', 'country', 'province', 'variety', 'winery', 'points', 'price', 'traits', 'description']].reset_index(drop=True) df_rec_final.index = df_rec_final.index + 1 df_rec_final['traits']=df_rec_final['traits'].str.replace(" ", " | ") df_rec_final.rename(columns={'title':'Name', 'country':'Country', 'province':'State/Province', 'variety':'Type', 'winery':'Winery', 'points':'Rating', 'price':'Price', 'description':'Review', 'traits':'Key Traits'}, inplace=True) st.balloons() st.dataframe(df_rec_final)