Spaces:
Build error
Build error
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration, T5Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
grammar_tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector') | |
grammar_model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector') | |
import torch | |
import gradio as gr | |
# def chat(message, history): | |
# history = history if history is not None else [] | |
# new_user_input_ids = tokenizer.encode(message+tokenizer.eos_token, return_tensors='pt') | |
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# history = model.generate(bot_input_ids, max_length=500, pad_token_id=tokenizer.eos_token_id).tolist() | |
# # response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n") | |
# # pretty print last ouput tokens from bot | |
# response = tokenizer.decode(bot_input_ids.shape[-1][0], skip_special_tokens=True) | |
# print("The response is ", [response]) | |
# # history.append((message, response, new_user_input_ids, chat_history_ids)) | |
# return response, history, feedback(message) | |
def chat(message, history=[]): | |
new_user_input_ids = tokenizer.encode(message+tokenizer.eos_token, return_tensors='pt') | |
if len(history) > 0: | |
last_set_of_ids = history[len(history)-1][2] | |
bot_input_ids = torch.cat([last_set_of_ids, new_user_input_ids], dim=-1) | |
else: | |
bot_input_ids = new_user_input_ids | |
chat_history_ids = model.generate(bot_input_ids, max_length=5000, pad_token_id=tokenizer.eos_token_id) | |
response_ids = chat_history_ids[:, bot_input_ids.shape[-1]:][0] | |
response = tokenizer.decode(response_ids, skip_special_tokens=True) | |
history.append((message, response, chat_history_ids)) | |
return history, history, feedback(message) | |
def feedback(text): | |
num_return_sequences=1 | |
batch = grammar_tokenizer([text],truncation=True,padding='max_length',max_length=64, return_tensors="pt") | |
corrections= grammar_model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5) | |
corrected_text = tokenizer.decode(corrections[0], clean_up_tokenization_spaces=True, skip_special_tokens=True) | |
print("The corrections are: ", corrections) | |
if corrected_text == text: | |
feedback = f'Looks good! Keep up the good work' | |
else: | |
feedback = f'\'{" ".join(corrected_text)}\' might be a little better' | |
return feedback | |
iface = gr.Interface( | |
chat, | |
["text", "state"], | |
["chatbot", "state", "text"], | |
allow_screenshot=False, | |
allow_flagging="never", | |
) | |
iface.launch() | |