Spaces:
Configuration error
Configuration error
from llama_index.core.agent.workflow import FunctionAgent | |
from llama_index.core.tools import FunctionTool | |
from llama_index.core import VectorStoreIndex, Document | |
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser | |
from llama_index.core.postprocessor import SentenceTransformerRerank | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core.retrievers import VectorIndexRetriever | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader | |
import os | |
from typing import List, Dict, Any | |
from llama_index.tools.arxiv import ArxivToolSpec | |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec | |
import re | |
from llama_index.core.agent.workflow import ReActAgent | |
import wandb | |
from llama_index.callbacks.wandb import WandbCallbackHandler | |
from llama_index.core.callbacks.base import CallbackManager | |
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler | |
from llama_index.core import Settings | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
import requests | |
import logging | |
from llama_index.core.workflow import Context | |
from llama_index.core.agent.workflow import AgentStream | |
from llama_index.readers_web import TrafilaturaWebReader | |
from llama_index_readers_youtube_transcript import YoutubeTranscriptReader | |
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) | |
llama_debug = LlamaDebugHandler(print_trace_on_end=True) | |
# Comprehensive callback manager | |
callback_manager = CallbackManager([ | |
wandb_callback, # For W&B tracking | |
llama_debug # For general debugging | |
]) | |
logging.basicConfig(level=logging.INFO) | |
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG) | |
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG) | |
model_id = "Qwen/Qwen2.5-7B-Instruct" | |
proj_llm = HuggingFaceLLM( | |
model_name=model_id, | |
tokenizer_name=model_id, | |
device_map="auto", # will use GPU if available | |
model_kwargs={"torch_dtype": "auto"}, | |
generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused | |
) | |
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5") | |
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet | |
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) | |
llama_debug = LlamaDebugHandler(print_trace_on_end=True) | |
callback_manager = CallbackManager([wandb_callback, llama_debug]) | |
Settings.llm = proj_llm | |
Settings.embed_model = embed_model | |
Settings.callback_manager = callback_manager | |
import os | |
from typing import List | |
from urllib.parse import urlparse | |
from llama_index.core.tools import FunctionTool | |
from llama_index.core import Document | |
# --- Import all required official LlamaIndex Readers --- | |
from llama_index.readers.file import ( | |
PDFReader, | |
DocxReader, | |
CSVReader, | |
PandasExcelReader, | |
ImageReader, | |
) | |
from llama_index.readers.json import JSONReader | |
from llama_index.readers.web import TrafilaturaWebReader | |
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader | |
from llama_index.readers.audiotranscribe.openai import OpenAIAudioTranscriptReader | |
def read_and_parse_content(input_path: str) -> List[Document]: | |
""" | |
Reads and parses content from a file path or URL into Document objects. | |
It automatically detects the input type and uses the appropriate LlamaIndex reader. | |
Args: | |
input_path: A local file path or a web URL. | |
Returns: | |
A list of LlamaIndex Document objects with the extracted text. | |
""" | |
# --- Completed readers map for various local file types --- | |
readers_map = { | |
# Documents | |
'.pdf': PDFReader(), | |
'.docx': DocxReader(), | |
'.doc': DocxReader(), | |
# Data files | |
'.csv': CSVReader(), | |
'.json': JSONReader(), | |
'.xlsx': PandasExcelReader(), | |
# Media files | |
'.jpg': ImageReader(), | |
'.jpeg': ImageReader(), | |
'.png': ImageReader(), | |
'.mp3': OpenAIAudioTranscriptReader(), | |
} | |
# --- URL Handling --- | |
if input_path.startswith("http"): | |
if "https://www.youtube.com/watch?v=2N-rwsa5lEw2" in urlparse(input_path).netloc or "https://www.youtube.com/watch?v=2N-rwsa5lEw3" in urlparse(input_path).netloc: | |
loader = YoutubeTranscriptReader() | |
documents = loader.load_data(youtubelinks=[input_path]) | |
else: | |
loader = TrafilaturaWebReader() | |
documents = loader.load_data(urls=[input_path]) | |
# --- Local File Handling --- | |
else: | |
if not os.path.exists(input_path): | |
return [Document(text=f"Error: File not found at {input_path}")] | |
file_extension = os.path.splitext(input_path)[1].lower() | |
if file_extension in readers_map: | |
loader = readers_map[file_extension] | |
documents = loader.load_data(file=input_path) | |
else: | |
# Fallback for text-based files without a specific reader (e.g., .py, .txt, .md) | |
try: | |
with open(input_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
documents = [Document(text=content, metadata={"source": input_path})] | |
except Exception as e: | |
return [Document(text=f"Error reading file as plain text: {e}")] | |
# Add the source path to metadata for traceability | |
for doc in documents: | |
doc.metadata["source"] = input_path | |
return documents | |
# --- Create the final LlamaIndex Tool from the completed function --- | |
read_and_parse_tool = FunctionTool.from_defaults( | |
fn=read_and_parse_content, | |
name="read_and_parse_tool", | |
description=( | |
"Use this tool to read and extract content from any given file or URL. " | |
"It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, " | |
"YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text " | |
"from files like .py or .txt. The input MUST be a single valid file path or a URL." | |
) | |
) | |
from typing import List | |
from llama_index.core import VectorStoreIndex, Document, Settings | |
from llama_index.core.tools import QueryEngineTool | |
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser | |
from llama_index.core.postprocessor import SentenceTransformerRerank | |
from llama_index.core.query_engine import RetrieverQueryEngine | |
def create_rag_tool(documents: List[Document]) -> QueryEngineTool: | |
""" | |
Creates a RAG query engine tool from a list of documents using advanced components. | |
Inspired by 'create_advanced_index' and 'create_context_aware_query_engine' methods. | |
Args: | |
documents: A list of LlamaIndex Document objects from the read_and_parse_tool. | |
Returns: | |
A QueryEngineTool configured for the agent to use in the current task. | |
""" | |
if not documents: | |
return None | |
# --- 1. Node Parsing (from your 'create_advanced_index' logic) --- | |
# Using the exact parsers and logic you defined. | |
hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128]) | |
sentence_window_parser = SentenceWindowNodeParser.from_defaults( | |
window_size=3, | |
window_metadata_key="window", | |
original_text_metadata_key="original_text", | |
) | |
# Choose parser based on document count | |
if len(documents) > 5: # Heuristic for using hierarchical parser | |
nodes = hierarchical_parser.get_nodes_from_documents(documents) | |
else: | |
nodes = sentence_window_parser.get_nodes_from_documents(documents) | |
# --- 2. Index Creation --- | |
# Assumes Settings.embed_model is configured globally as in your snippet | |
index = VectorStoreIndex(nodes) | |
# --- 3. Query Engine Creation (from your 'create_context_aware_query_engine' logic) --- | |
# Using the exact reranker you specified | |
reranker = SentenceTransformerRerank( | |
model="cross-encoder/ms-marco-MiniLM-L-2-v2", | |
top_n=5 | |
) | |
query_engine = index.as_query_engine( | |
similarity_top_k=10, | |
node_postprocessors=[reranker], | |
# Assumes Settings.llm is configured globally | |
) | |
# --- 4. Wrap the Query Engine in a Tool --- | |
rag_engine_tool = QueryEngineTool.from_defaults( | |
query_engine=query_engine, | |
name="rag_engine_tool", | |
description=( | |
"Use this tool to ask questions and query the content of documents that have already " | |
"been loaded. This is your primary way to find answers from the provided context. " | |
"The input is a natural language question about the documents' content." | |
) | |
) | |
return rag_engine_tool | |
import re | |
from llama_index.core.tools import FunctionTool | |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec | |
# 1. Create the base DuckDuckGo search tool from the official spec. | |
# This tool returns text summaries of search results, not just URLs. | |
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0] | |
# 2. Define a wrapper function to post-process the output. | |
def search_and_extract_top_url(query: str) -> str: | |
""" | |
Takes a search query, uses the base DuckDuckGo search tool to get results, | |
and then parses the output to extract and return only the first URL. | |
Args: | |
query: The natural language search query. | |
Returns: | |
A string containing the first URL found, or an error message if none is found. | |
""" | |
# Call the base tool to get the search results as text | |
search_results = base_duckduckgo_tool(query) | |
# Use a regular expression to find the first URL in the text output | |
# The \S+ pattern matches any sequence of non-whitespace characters | |
url_match = re.search(r"https?://\S+", str(search_results)) | |
if url_match: | |
return url_match.group(0) | |
else: | |
return "No URL could be extracted from the search results." | |
# 3. Create the final, customized FunctionTool for the agent. | |
# This is the tool you will actually give to your agent. | |
extract_url_tool = FunctionTool.from_defaults( | |
fn=search_and_extract_top_url, | |
name="extract_url_tool", | |
description=( | |
"Use this tool ONLY when you need to find a relevant URL to answer a question but no " | |
"specific file, document, or URL has been provided. It takes a search query as input " | |
"and returns a single, relevant URL." | |
) | |
) | |
def execute_python_code(code: str) -> str: | |
try: | |
safe_globals = { | |
"__builtins__": { | |
"len": len, "str": str, "int": int, "float": float, | |
"list": list, "dict": dict, "sum": sum, "max": max, "min": min, | |
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate, | |
"range": range, "zip": zip, "map": map, "filter": filter, | |
"any": any, "all": all, "type": type, "isinstance": isinstance, | |
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple | |
}, | |
# Core Python modules | |
"math": __import__("math"), | |
"datetime": __import__("datetime"), | |
"re": __import__("re"), | |
"os": __import__("os"), | |
"sys": __import__("sys"), | |
"json": __import__("json"), | |
"csv": __import__("csv"), | |
"random": __import__("random"), | |
"itertools": __import__("itertools"), | |
"collections": __import__("collections"), | |
"functools": __import__("functools"), | |
# Data Science and Numerical Computing | |
"numpy": __import__("numpy"), | |
"np": __import__("numpy"), | |
"pandas": __import__("pandas"), | |
"pd": __import__("pandas"), | |
"scipy": __import__("scipy"), | |
# Visualization | |
"matplotlib": __import__("matplotlib"), | |
"plt": __import__("matplotlib.pyplot"), | |
"seaborn": __import__("seaborn"), | |
"sns": __import__("seaborn"), | |
"plotly": __import__("plotly"), | |
# Machine Learning | |
"sklearn": __import__("sklearn"), | |
"xgboost": __import__("xgboost"), | |
"lightgbm": __import__("lightgbm"), | |
# Statistics | |
"statistics": __import__("statistics"), | |
"statsmodels": __import__("statsmodels"), | |
# Image Processing | |
"PIL": __import__("PIL"), | |
"cv2": __import__("cv2"), | |
"skimage": __import__("skimage"), | |
# Network and Web | |
"requests": __import__("requests"), | |
"urllib": __import__("urllib"), | |
# Text Processing | |
"nltk": __import__("nltk"), | |
"spacy": __import__("spacy"), | |
# Time Series | |
"pytz": __import__("pytz"), | |
# Utilities | |
"tqdm": __import__("tqdm"), | |
"pickle": __import__("pickle"), | |
"gzip": __import__("gzip"), | |
"base64": __import__("base64"), | |
"hashlib": __import__("hashlib"), | |
"uuid": __import__("uuid"), | |
# Scientific Computing | |
"sympy": __import__("sympy"), | |
"networkx": __import__("networkx"), | |
# Database | |
"sqlite3": __import__("sqlite3"), | |
# Parallel Processing | |
"multiprocessing": __import__("multiprocessing"), | |
"threading": __import__("threading"), | |
"concurrent": __import__("concurrent"), | |
} | |
exec_locals = {} | |
exec(code, safe_globals, exec_locals) | |
if 'result' in exec_locals: | |
return str(exec_locals['result']) | |
else: | |
return "Code executed successfully" | |
except Exception as e: | |
return f"Code execution failed: {str(e)}" | |
code_execution_tool = FunctionTool.from_defaults( | |
fn=execute_python_code, | |
name="Python Code Execution", | |
description="Execute Python code safely for calculations and data processing" | |
) | |
import re | |
from llama_index.core.tools import FunctionTool | |
from llama_index.llms.huggingface import HuggingFaceLLM | |
# --- 1. Initialize a dedicated LLM for Code Generation --- | |
# It's good practice to use a model specifically fine-tuned for coding. | |
# This model is loaded only once for efficiency. | |
try: | |
code_llm = HuggingFaceLLM( | |
model_name="Qwen/Qwen2.5-Coder-7B", | |
tokenizer_name="Qwen/Qwen2.5-Coder-7B", | |
device_map="auto", | |
model_kwargs={"torch_dtype": "auto"}, | |
# Set generation parameters for precise, non-creative code output | |
generate_kwargs={"temperature": 0.0, "do_sample": False} | |
) | |
except Exception as e: | |
print(f"Error initializing code generation model: {e}") | |
print("Code generation tool will not be available.") | |
code_llm = None | |
def generate_python_code(query: str) -> str: | |
""" | |
Generates executable Python code based on a natural language query. | |
Args: | |
query: A detailed description of the desired functionality for the Python code. | |
Returns: | |
A string containing only the generated Python code, ready for execution. | |
""" | |
if not code_llm: | |
return "Error: Code generation model is not available." | |
# --- 2. Create a precise prompt for the code model --- | |
# This prompt explicitly asks for only code, no explanations. | |
prompt = f""" | |
Your task is to generate ONLY the Python code for the following request. | |
Do not include any explanations, introductory text, or markdown formatting like '```python'. | |
The output must be a single, clean block of Python code. | |
Request: "{query}" | |
Python Code: | |
""" | |
# --- 3. Generate the response and post-process it --- | |
response = code_llm.complete(prompt) | |
raw_code = str(response) | |
# --- 4. Clean the output to ensure it's pure code --- | |
# Models often wrap code in markdown fences, this removes them. | |
code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL) | |
if code_match: | |
# Extract the code from within the markdown block | |
return code_match.group(1).strip() | |
else: | |
# If no markdown, assume the model followed instructions and return the text directly | |
return raw_code.strip() | |
# --- 5. Create the LlamaIndex Tool from the function --- | |
generate_code_tool = FunctionTool.from_defaults( | |
fn=generate_python_code, | |
name="generate_python_code_tool", | |
description=( | |
"Use this tool to generate executable Python code based on a natural language description of a task. " | |
"The input should be a clear and specific request for what the code should do (e.g., 'a function to " | |
"calculate the nth Fibonacci number'). The tool returns a string containing only the Python code." | |
) | |
) | |
class EnhancedGAIAAgent: | |
def __init__(self): | |
print("Initializing Enhanced GAIA Agent...") | |
# Vérification du token HuggingFace | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
if not hf_token: | |
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required") | |
# Agent coordinateur principal qui utilise les agents spécialisés comme tools | |
self.coordinator = ReActAgent( | |
name="GAIACoordinator", | |
description="Main GAIA coordinator that uses specialized capabilities as intelligent tools", | |
system_prompt=""" | |
You are the main GAIA coordinator using ReAct reasoning methodology. | |
You have access to THREE specialist tools: | |
**1. analysis_tool** - Advanced multimodal document analysis specialist | |
- Use for: PDF, Word, CSV, image file analysis | |
- When to use: Questions with file attachments, document analysis, data extraction | |
**2. research_tool** - Intelligent research specialist with automatic routing | |
- Use for: External knowledge, current events, scientific papers | |
- When to use: Questions requiring external knowledge, factual verification, current information | |
**3. code_tool** - Advanced computational specialist using ReAct reasoning | |
- Use for: Mathematical calculations, data processing, logical operations | |
- Capabilities: Generates and executes Python, handles complex computations, step-by-step problem solving | |
- When to use: Precise calculations, data manipulation, mathematical problem solving | |
**4. code_execution_tool** - Use only to execute .py file | |
CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format : NO explanations, NO additional text, ONLY the precise answer | |
""", | |
llm=proj_llm, | |
tools=[analysis_tool, research_tool, code_tool, code_execution_tool], | |
max_steps=10, | |
verbose = True, | |
callback_manager=callback_manager, | |
) | |
async def format_gaia_answer(self, raw_response: str, original_question: str) -> str: | |
""" | |
Post-process the agent response to extract the exact GAIA format answer | |
""" | |
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly. | |
Examples: | |
Question: "How many research papers were published by the university between 2010 and 2020?" | |
Response: "Based on my analysis of the data, I found that the university published 156 research papers between 2010 and 2020." | |
Answer: 156 | |
Question: "What is the last name of the software engineer mentioned in the report?" | |
Response: "After reviewing the document, the software engineer mentioned is Dr. Martinez who developed the system." | |
Answer: Martinez | |
Question: "List the programming languages from this job description, alphabetized:" | |
Response: "The job description mentions several programming languages including Python, Java, C++, and JavaScript. When alphabetized, these are: C++, Java, JavaScript, Python" | |
Answer: C++, Java, JavaScript, Python | |
Question: "Give only the first name of the developer who created the framework." | |
Response: "The framework was created by Sarah Johnson, a senior developer at the company." | |
Answer: Sarah | |
Question: "Give the ISO country code as your answer." | |
Response: "The country in question is France, which has the ISO code FRA." | |
Answer: FRA | |
Question: "Provide your response in standard notation." | |
Response: "The calculated value is 314 million, which in standard notation is 3.14e+8" | |
Answer: 3.14e+8 | |
Now extract the exact answer: | |
Question: {original_question} | |
Response: {raw_response} | |
Answer:""" | |
try: | |
formatting_response = proj_llm.complete(format_prompt) | |
answer = str(formatting_response).strip() | |
# Extract just the answer after "Answer:" | |
if "Answer:" in answer: | |
answer = answer.split("Answer:")[-1].strip() | |
return answer | |
except Exception as e: | |
print(f"Error in formatting: {e}") | |
return self._extract_fallback_answer(raw_response) | |
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: | |
"""Download file associated with task_id""" | |
try: | |
response = requests.get(f"{api_url}/files/{task_id}", timeout=30) | |
response.raise_for_status() | |
# Save file locally | |
filename = f"task_{task_id}_file" | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return filename | |
except Exception as e: | |
print(f"Failed to download file for task {task_id}: {e}") | |
return None | |
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str: | |
question = question_data.get("Question", "") | |
task_id = question_data.get("task_id", "") | |
# Try to download file | |
try: | |
file_path = self.download_gaia_file(task_id) | |
except Exception as e: | |
print(f"Failed to download file for task {task_id}: {e}") | |
file_path = None | |
context_prompt = f""" | |
GAIA Task ID: {task_id} | |
Question: {question} | |
{'File downloaded: ' + file_path if file_path else 'No additional files referenced'} | |
Additionnal instructions to system prompt : | |
1. If a file is available, use the analysis_tool (except for .py files). | |
2. If a link is in the question, use the research_tool. | |
""" | |
try: | |
ctx = Context(self.coordinator) | |
# Use streaming to see step-by-step reasoning | |
print("=== AGENT REASONING STEPS ===") | |
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt) | |
full_response = "" | |
async for event in handler.stream_events(): | |
if isinstance(event, AgentStream): | |
print(event.delta, end="", flush=True) | |
full_response += event.delta | |
# Get the final response | |
raw_response = await handler | |
print("\n=== END REASONING ===") | |
# Post-process to extract exact GAIA format | |
formatted_answer = await self.format_gaia_answer(str(raw_response), question) | |
print(f"Formatted answer: {formatted_answer}") | |
return formatted_answer | |
except Exception as e: | |
error_msg = f"Error processing question: {str(e)}" | |
print(error_msg) | |
return error_msg |