File size: 6,865 Bytes
61ffb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from flask import Flask, request, jsonify
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import xgboost as xgb
import logging

app = Flask(__name__)
CORS(app)  # Allow cross-origin requests (important for frontend integration)

# Setup logging
logging.basicConfig(level=logging.INFO)

# Load models
try:
    rf = joblib.load("rf_model.pkl")
    xgb_model = xgb.Booster()
    xgb_model.load_model("xgb_model.json")
    app.logger.info("✅ Models loaded successfully.")
except Exception as e:
    app.logger.error(f"❌ Error loading models: {e}")
    raise e

# Load tile data
with open("tile_catalog.json", "r", encoding="utf-8") as f:
    tile_catalog = json.load(f)

with open("tile_sizes.json", "r", encoding="utf-8") as f:
    tile_sizes = json.load(f)

@app.route('/recommend', methods=['POST'])
def recommend():
    """
    Endpoint for product recommendations
    Expected JSON payload:
    {
        "tile_type": "floor"|"wall",
        "coverage": float,
        "area": float,
        "price_range": [min, max],
        "preferred_sizes": [size1, size2] (optional)
    }
    """
    try:
        data = request.get_json()

        required_fields = ['tile_type', 'coverage', 'area', 'price_range']
        if not all(field in data for field in required_fields):
            return jsonify({"error": "Missing required fields"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400

        # Validate numeric inputs
        validate_positive_number(data['coverage'], "coverage")
        validate_positive_number(data['area'], "area")
        if (not isinstance(data['price_range'], list) or
            len(data['price_range']) != 2 or
            data['price_range'][0] < 0 or
            data['price_range'][1] <= 0 or
            data['price_range'][0] >= data['price_range'][1]):
            return jsonify({"error": "Invalid price range"}), 400

        features = prepare_features(data)

        xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
        rf_pred = rf.predict_proba(features)[0][1]
        combined_score = (xgb_pred + rf_pred) / 2

        recommended_products = filter_products(
            tile_type=tile_type,
            min_price=data['price_range'][0],
            max_price=data['price_range'][1],
            preferred_sizes=data.get('preferred_sizes', []),
            min_score=0.5
        )

        response = {
            "recommendation_score": round(float(combined_score), 3),
            "total_matches": len(recommended_products),
            "recommended_products": recommended_products[:5],
            "calculation": calculate_requirements(data['area'], data['coverage'])
        }
        return jsonify(response)

    except Exception as e:
        app.logger.error(f"Error in /recommend: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

@app.route('/calculate', methods=['POST'])
def calculate():
    """
    Endpoint for tile calculation
    Expected JSON payload:
    {
        "tile_type": "floor"|"wall",
        "area": float,
        "tile_size": "12x12"|etc
    }
    """
    try:
        data = request.get_json()

        if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
            return jsonify({"error": "Missing required fields"}), 400

        tile_type = data['tile_type'].lower()
        if tile_type not in ['floor', 'wall']:
            return jsonify({"error": "Invalid tile type"}), 400

        if data['tile_size'] not in tile_sizes:
            return jsonify({"error": "Invalid tile size"}), 400

        validate_positive_number(data['area'], "area")

        tile_info = tile_sizes[data['tile_size']]
        area_per_tile = tile_info['length'] * tile_info['width']
        tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
        tiles_per_box = tile_info.get('tiles_per_box', 10)
        boxes_needed = math.ceil(tiles_needed / tiles_per_box)

        matching_products = [
            p for p in tile_catalog
            if p['type'].lower() == tile_type and p['size'] == data['tile_size']
        ]

        return jsonify({
            "tile_type": tile_type,
            "area": data['area'],
            "tile_size": data['tile_size'],
            "tiles_needed": tiles_needed,
            "boxes_needed": boxes_needed,
            "matching_products": matching_products[:3],
            "total_matches": len(matching_products)
        })

    except Exception as e:
        app.logger.error(f"Error in /calculate: {str(e)}")
        return jsonify({"error": "Internal server error"}), 500

def prepare_features(data):
    """Prepare feature vector for ML prediction"""
    tile_type_num = 0 if data['tile_type'] == 'floor' else 1
    price_per_sqft = data['price_range'][1] / data['coverage']
    budget_efficiency = data['coverage'] / data['price_range'][1]

    return np.array([[
        tile_type_num,
        data['area'],
        data['coverage'],
        data['price_range'][0],
        data['price_range'][1],
        price_per_sqft,
        budget_efficiency
    ]])

def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
    """Filter and score products"""
    filtered = []
    for product in tile_catalog:
        if (product['type'].lower() == tile_type and
            min_price <= product['price'] <= max_price and
            (not preferred_sizes or product['size'] in preferred_sizes)):

            price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
            size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
            product_score = (price_score + size_score) / 2

            if product_score >= min_score:
                filtered.append({
                    **product,
                    "recommendation_score": round(product_score, 2)
                })

    return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)

def calculate_requirements(area, coverage):
    """Calculate tile quantities and estimated costs"""
    min_tiles = math.ceil(area / coverage)
    suggested_tiles = math.ceil(min_tiles * 1.1)
    return {
        "minimum_tiles": min_tiles,
        "suggested_tiles": suggested_tiles,
        "estimated_cost_range": [
            round(area * 3, 2),  # example: ₹3 per sqft
            round(area * 10, 2)  # example: ₹10 per sqft
        ]
    }

def validate_positive_number(value, field):
    """Raise ValueError if value is not a positive number"""
    if not isinstance(value, (int, float)) or value <= 0:
        raise ValueError(f"{field} must be a positive number")

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=False)