File size: 6,865 Bytes
61ffb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from flask import Flask, request, jsonify
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import xgboost as xgb
import logging
app = Flask(__name__)
CORS(app) # Allow cross-origin requests (important for frontend integration)
# Setup logging
logging.basicConfig(level=logging.INFO)
# Load models
try:
rf = joblib.load("rf_model.pkl")
xgb_model = xgb.Booster()
xgb_model.load_model("xgb_model.json")
app.logger.info("✅ Models loaded successfully.")
except Exception as e:
app.logger.error(f"❌ Error loading models: {e}")
raise e
# Load tile data
with open("tile_catalog.json", "r", encoding="utf-8") as f:
tile_catalog = json.load(f)
with open("tile_sizes.json", "r", encoding="utf-8") as f:
tile_sizes = json.load(f)
@app.route('/recommend', methods=['POST'])
def recommend():
"""
Endpoint for product recommendations
Expected JSON payload:
{
"tile_type": "floor"|"wall",
"coverage": float,
"area": float,
"price_range": [min, max],
"preferred_sizes": [size1, size2] (optional)
}
"""
try:
data = request.get_json()
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
if not all(field in data for field in required_fields):
return jsonify({"error": "Missing required fields"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type. Use 'floor' or 'wall'"}), 400
# Validate numeric inputs
validate_positive_number(data['coverage'], "coverage")
validate_positive_number(data['area'], "area")
if (not isinstance(data['price_range'], list) or
len(data['price_range']) != 2 or
data['price_range'][0] < 0 or
data['price_range'][1] <= 0 or
data['price_range'][0] >= data['price_range'][1]):
return jsonify({"error": "Invalid price range"}), 400
features = prepare_features(data)
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
rf_pred = rf.predict_proba(features)[0][1]
combined_score = (xgb_pred + rf_pred) / 2
recommended_products = filter_products(
tile_type=tile_type,
min_price=data['price_range'][0],
max_price=data['price_range'][1],
preferred_sizes=data.get('preferred_sizes', []),
min_score=0.5
)
response = {
"recommendation_score": round(float(combined_score), 3),
"total_matches": len(recommended_products),
"recommended_products": recommended_products[:5],
"calculation": calculate_requirements(data['area'], data['coverage'])
}
return jsonify(response)
except Exception as e:
app.logger.error(f"Error in /recommend: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
@app.route('/calculate', methods=['POST'])
def calculate():
"""
Endpoint for tile calculation
Expected JSON payload:
{
"tile_type": "floor"|"wall",
"area": float,
"tile_size": "12x12"|etc
}
"""
try:
data = request.get_json()
if 'tile_type' not in data or 'area' not in data or 'tile_size' not in data:
return jsonify({"error": "Missing required fields"}), 400
tile_type = data['tile_type'].lower()
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
if data['tile_size'] not in tile_sizes:
return jsonify({"error": "Invalid tile size"}), 400
validate_positive_number(data['area'], "area")
tile_info = tile_sizes[data['tile_size']]
area_per_tile = tile_info['length'] * tile_info['width']
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1)
tiles_per_box = tile_info.get('tiles_per_box', 10)
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
matching_products = [
p for p in tile_catalog
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
]
return jsonify({
"tile_type": tile_type,
"area": data['area'],
"tile_size": data['tile_size'],
"tiles_needed": tiles_needed,
"boxes_needed": boxes_needed,
"matching_products": matching_products[:3],
"total_matches": len(matching_products)
})
except Exception as e:
app.logger.error(f"Error in /calculate: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
def prepare_features(data):
"""Prepare feature vector for ML prediction"""
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
price_per_sqft = data['price_range'][1] / data['coverage']
budget_efficiency = data['coverage'] / data['price_range'][1]
return np.array([[
tile_type_num,
data['area'],
data['coverage'],
data['price_range'][0],
data['price_range'][1],
price_per_sqft,
budget_efficiency
]])
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
"""Filter and score products"""
filtered = []
for product in tile_catalog:
if (product['type'].lower() == tile_type and
min_price <= product['price'] <= max_price and
(not preferred_sizes or product['size'] in preferred_sizes)):
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
product_score = (price_score + size_score) / 2
if product_score >= min_score:
filtered.append({
**product,
"recommendation_score": round(product_score, 2)
})
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
def calculate_requirements(area, coverage):
"""Calculate tile quantities and estimated costs"""
min_tiles = math.ceil(area / coverage)
suggested_tiles = math.ceil(min_tiles * 1.1)
return {
"minimum_tiles": min_tiles,
"suggested_tiles": suggested_tiles,
"estimated_cost_range": [
round(area * 3, 2), # example: ₹3 per sqft
round(area * 10, 2) # example: ₹10 per sqft
]
}
def validate_positive_number(value, field):
"""Raise ValueError if value is not a positive number"""
if not isinstance(value, (int, float)) or value <= 0:
raise ValueError(f"{field} must be a positive number")
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=False)
|