Tile / app.py
Coots's picture
Update app.py
503b5f6 verified
raw
history blame
6.8 kB
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
import joblib
import numpy as np
import json
import math
import os
import xgboost as xgb
import logging
# === Flask Setup ===
app = Flask(__name__, static_folder='.', static_url_path='')
CORS(app)
logging.basicConfig(level=logging.INFO)
# === Load models ===
try:
rf = joblib.load("rf_model.pkl")
xgb_model = xgb.Booster()
xgb_model.load_model("xgb_model.json")
app.logger.info("βœ… Models loaded successfully.")
except Exception as e:
app.logger.error(f"❌ Error loading models: {e}")
raise e
# === Load data ===
with open("tile_catalog.json", "r", encoding="utf-8") as f:
tile_catalog = json.load(f)
with open("tile_sizes.json", "r", encoding="utf-8") as f:
tile_sizes = json.load(f)
# === Serve index.html ===
@app.route('/')
def serve_index():
return app.send_static_file('index.html')
# === Serve static assets (if any JS, CSS, images) ===
@app.route('/<path:path>')
def serve_static_files(path):
return send_from_directory('.', path)
# === Calculate tiles endpoint ===
@app.route('/calculate', methods=['POST'])
def calculate():
try:
data = request.get_json()
for field in ['tile_type', 'length', 'width', 'tile_size']:
if field not in data:
return jsonify({"error": f"Missing field: {field}"}), 400
tile_type = data['tile_type'].lower()
length = float(data['length'])
width = float(data['width'])
validate_positive_number(length, "length")
validate_positive_number(width, "width")
if tile_type not in ['floor', 'wall']:
return jsonify({"error": "Invalid tile type"}), 400
if data['tile_size'] not in tile_sizes:
return jsonify({"error": "Invalid tile size"}), 400
area = length * width
tile_info = tile_sizes[data['tile_size']]
area_per_tile = tile_info['length'] * tile_info['width']
tiles_needed = math.ceil((area / area_per_tile) * 1.1)
tiles_per_box = tile_info.get('tiles_per_box', 10)
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
matching_products = [
{
**p,
"link": p.get("url", "#")
}
for p in tile_catalog
if p['type'].lower() == tile_type and p['size'] == data['tile_size']
]
return jsonify({
"tile_type": tile_type,
"tile_size": data['tile_size'],
"length": round(length, 2),
"width": round(width, 2),
"area": round(area, 2),
"tiles_needed": tiles_needed,
"boxes_needed": boxes_needed,
"matching_products": matching_products[:5],
"total_matches": len(matching_products)
})
except Exception as e:
app.logger.error(f"Error in /calculate: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
# === Recommend endpoint ===
@app.route('/recommend', methods=['POST'])
def recommend():
try:
data = request.get_json()
required_fields = ['tile_type', 'coverage', 'length', 'width', 'price_range']
for field in required_fields:
if field not in data:
return jsonify({"error": f"Missing field: {field}"}), 400
tile_type = data['tile_type'].lower()
length = float(data['length'])
width = float(data['width'])
validate_positive_number(length, "length")
validate_positive_number(width, "width")
area = length * width
validate_positive_number(area, "area")
coverage = float(data['coverage'])
validate_positive_number(coverage, "coverage")
if not isinstance(data['price_range'], list) or len(data['price_range']) != 2:
return jsonify({"error": "Invalid price range"}), 400
features = prepare_features({
**data,
"area": area
})
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
rf_pred = rf.predict_proba(features)[0][1]
combined_score = (xgb_pred + rf_pred) / 2
recommended_products = filter_products(
tile_type=tile_type,
min_price=data['price_range'][0],
max_price=data['price_range'][1],
preferred_sizes=data.get('preferred_sizes', []),
min_score=0.5
)
return jsonify({
"recommendation_score": round(float(combined_score), 3),
"recommended_products": recommended_products[:5],
"calculation": calculate_requirements(area, coverage)
})
except Exception as e:
app.logger.error(f"Error in /recommend: {str(e)}")
return jsonify({"error": "Internal server error"}), 500
# === Helper Functions ===
def prepare_features(data):
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
price_per_sqft = data['price_range'][1] / data['coverage']
budget_efficiency = data['coverage'] / data['price_range'][1]
return np.array([[tile_type_num, data['area'], data['coverage'],
data['price_range'][0], data['price_range'][1],
price_per_sqft, budget_efficiency]])
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
filtered = []
for product in tile_catalog:
if (product['type'].lower() == tile_type and
min_price <= product['price'] <= max_price and
(not preferred_sizes or product['size'] in preferred_sizes)):
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
product_score = (price_score + size_score) / 2
if product_score >= min_score:
filtered.append({
**product,
"recommendation_score": round(product_score, 2),
"link": product.get("url", "#")
})
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
def calculate_requirements(area, coverage):
min_tiles = math.ceil(area / coverage)
suggested_tiles = math.ceil(min_tiles * 1.1)
return {
"minimum_tiles": min_tiles,
"suggested_tiles": suggested_tiles,
"estimated_cost_range": [
round(area * 3, 2),
round(area * 10, 2)
]
}
def validate_positive_number(value, field):
if not isinstance(value, (int, float)) or value <= 0:
raise ValueError(f"{field} must be a positive number")
# === Start the server ===
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False)