Update app.py
Browse files
app.py
CHANGED
@@ -4,180 +4,116 @@ import joblib
|
|
4 |
import numpy as np
|
5 |
import json
|
6 |
import math
|
7 |
-
import os
|
8 |
import xgboost as xgb
|
9 |
-
import
|
10 |
|
11 |
-
app = Flask(__name__, static_folder=
|
12 |
CORS(app)
|
13 |
-
logging.basicConfig(level=logging.INFO)
|
14 |
|
15 |
-
#
|
16 |
try:
|
17 |
rf = joblib.load("rf_model.pkl")
|
18 |
xgb_model = xgb.Booster()
|
19 |
xgb_model.load_model("xgb_model.json")
|
20 |
-
|
21 |
except Exception as e:
|
22 |
-
|
23 |
raise e
|
24 |
|
25 |
-
#
|
26 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
27 |
tile_catalog = json.load(f)
|
28 |
|
29 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
30 |
-
|
31 |
-
|
32 |
-
# === Serve Frontend ===
|
33 |
-
@app.route('/')
|
34 |
-
def serve_index():
|
35 |
-
return send_from_directory('.', 'index.html')
|
36 |
-
|
37 |
-
@app.route('/<path:path>')
|
38 |
-
def serve_static(path):
|
39 |
-
return send_from_directory('.', path)
|
40 |
-
|
41 |
-
# === Recommend Endpoint ===
|
42 |
-
@app.route('/recommend', methods=['POST'])
|
43 |
-
def recommend():
|
44 |
-
try:
|
45 |
-
data = request.get_json()
|
46 |
-
required_fields = ['tile_type', 'coverage', 'area', 'price_range']
|
47 |
-
if not all(field in data for field in required_fields):
|
48 |
-
return jsonify({"error": "Missing required fields"}), 400
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
validate_positive_number(data['coverage'], "coverage")
|
55 |
-
validate_positive_number(data['area'], "area")
|
56 |
-
|
57 |
-
if (not isinstance(data['price_range'], list) or len(data['price_range']) != 2 or
|
58 |
-
data['price_range'][0] < 0 or data['price_range'][1] <= 0 or
|
59 |
-
data['price_range'][0] >= data['price_range'][1]):
|
60 |
-
return jsonify({"error": "Invalid price range"}), 400
|
61 |
-
|
62 |
-
features = prepare_features(data)
|
63 |
-
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
64 |
-
rf_pred = rf.predict_proba(features)[0][1]
|
65 |
-
combined_score = (xgb_pred + rf_pred) / 2
|
66 |
-
|
67 |
-
recommended_products = filter_products(
|
68 |
-
tile_type=tile_type,
|
69 |
-
min_price=data['price_range'][0],
|
70 |
-
max_price=data['price_range'][1],
|
71 |
-
preferred_sizes=data.get('preferred_sizes', []),
|
72 |
-
min_score=0.5
|
73 |
-
)
|
74 |
-
|
75 |
-
response = {
|
76 |
-
"recommendation_score": round(float(combined_score), 3),
|
77 |
-
"total_matches": len(recommended_products),
|
78 |
-
"recommended_products": recommended_products[:5],
|
79 |
-
"calculation": calculate_requirements(data['area'], data['coverage'])
|
80 |
-
}
|
81 |
-
return jsonify(response)
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
app.logger.error(f"Error in /recommend: {str(e)}")
|
85 |
-
return jsonify({"error": "Internal server error"}), 500
|
86 |
|
87 |
-
|
88 |
-
@app.route('/calculate', methods=['POST'])
|
89 |
def calculate():
|
90 |
try:
|
91 |
data = request.get_json()
|
92 |
-
|
93 |
-
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
return jsonify({"error": "Invalid tile type"}), 400
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# Calculate area per tile
|
104 |
-
area_per_tile = data['tile_length'] * data['tile_width']
|
105 |
-
tiles_needed = math.ceil((data['area'] / area_per_tile) * 1.1) # 10% buffer
|
106 |
-
tiles_per_box = 10 # Assuming 10 tiles per box
|
107 |
-
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
|
108 |
|
109 |
matching_products = [
|
110 |
p for p in tile_catalog
|
111 |
-
if p[
|
112 |
]
|
113 |
|
114 |
return jsonify({
|
115 |
"tile_type": tile_type,
|
116 |
-
"area":
|
117 |
-
"
|
118 |
-
"tile_width": data['tile_width'],
|
119 |
"tiles_needed": tiles_needed,
|
120 |
-
"boxes_needed":
|
121 |
"matching_products": matching_products[:3],
|
122 |
"total_matches": len(matching_products)
|
123 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
-
|
127 |
-
return jsonify({"error": "
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
data['area'],
|
139 |
-
data['coverage'],
|
140 |
-
data['price_range'][0],
|
141 |
-
data['price_range'][1],
|
142 |
-
price_per_sqft,
|
143 |
-
budget_efficiency
|
144 |
-
]])
|
145 |
-
|
146 |
-
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
147 |
filtered = []
|
148 |
for product in tile_catalog:
|
149 |
-
if
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
def calculate_requirements(area, coverage):
|
166 |
-
min_tiles = math.ceil(area / coverage)
|
167 |
-
suggested_tiles = math.ceil(min_tiles * 1.1)
|
168 |
-
return {
|
169 |
-
"minimum_tiles": min_tiles,
|
170 |
-
"suggested_tiles": suggested_tiles,
|
171 |
-
"estimated_cost_range": [
|
172 |
-
round(area * 3, 2),
|
173 |
-
round(area * 10, 2)
|
174 |
-
]
|
175 |
-
}
|
176 |
-
|
177 |
-
def validate_positive_number(value, field):
|
178 |
-
if not isinstance(value, (int, float)) or value <= 0:
|
179 |
-
raise ValueError(f"{field} must be a positive number")
|
180 |
-
|
181 |
-
# === Run App ===
|
182 |
-
if __name__ == '__main__':
|
183 |
-
app.run(host='0.0.0.0', port=7860, debug=False)
|
|
|
4 |
import numpy as np
|
5 |
import json
|
6 |
import math
|
|
|
7 |
import xgboost as xgb
|
8 |
+
import os
|
9 |
|
10 |
+
app = Flask(__name__, static_folder='.', static_url_path='/')
|
11 |
CORS(app)
|
|
|
12 |
|
13 |
+
# Load models
|
14 |
try:
|
15 |
rf = joblib.load("rf_model.pkl")
|
16 |
xgb_model = xgb.Booster()
|
17 |
xgb_model.load_model("xgb_model.json")
|
18 |
+
print("β
Models loaded successfully.")
|
19 |
except Exception as e:
|
20 |
+
print(f"β Error loading models: {e}")
|
21 |
raise e
|
22 |
|
23 |
+
# Load tile catalog and tile size data
|
24 |
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
25 |
tile_catalog = json.load(f)
|
26 |
|
27 |
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
28 |
+
tile_sizes_list = json.load(f)
|
29 |
+
tile_sizes = {item["label"]: item["area_sqft"] for item in tile_sizes_list}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
@app.route("/")
|
32 |
+
def index():
|
33 |
+
return send_from_directory(".", "index.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
@app.route("/calculate", methods=["POST"])
|
|
|
36 |
def calculate():
|
37 |
try:
|
38 |
data = request.get_json()
|
39 |
+
tile_type = data.get("tile_type", "").lower()
|
40 |
+
area = float(data.get("area", 0))
|
41 |
+
tile_size_label = data.get("tile_size", "")
|
42 |
|
43 |
+
if tile_size_label not in tile_sizes:
|
44 |
+
return jsonify({"error": "Invalid tile size"}), 400
|
|
|
45 |
|
46 |
+
per_tile_area = tile_sizes[tile_size_label]
|
47 |
+
tiles_needed = math.ceil((area / per_tile_area) * 1.1)
|
48 |
+
boxes = math.ceil(tiles_needed / 10)
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
matching_products = [
|
51 |
p for p in tile_catalog
|
52 |
+
if p["type"].lower() == tile_type and p["size"] == tile_size_label
|
53 |
]
|
54 |
|
55 |
return jsonify({
|
56 |
"tile_type": tile_type,
|
57 |
+
"area": area,
|
58 |
+
"tile_size": tile_size_label,
|
|
|
59 |
"tiles_needed": tiles_needed,
|
60 |
+
"boxes_needed": boxes,
|
61 |
"matching_products": matching_products[:3],
|
62 |
"total_matches": len(matching_products)
|
63 |
})
|
64 |
+
except Exception as e:
|
65 |
+
print(f"β Error in /calculate: {e}")
|
66 |
+
return jsonify({"error": "Server error"}), 500
|
67 |
+
|
68 |
+
@app.route("/recommend", methods=["POST"])
|
69 |
+
def recommend():
|
70 |
+
try:
|
71 |
+
data = request.get_json()
|
72 |
+
tile_type = data.get("tile_type", "").lower()
|
73 |
+
area = float(data.get("area", 0))
|
74 |
+
coverage = float(data.get("coverage", 1))
|
75 |
+
price_range = data.get("price_range", [1, 100000])
|
76 |
+
preferred_sizes = data.get("preferred_sizes", [])
|
77 |
|
78 |
+
features = prepare_features(tile_type, coverage, area, price_range)
|
79 |
+
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
80 |
+
rf_pred = rf.predict_proba(features)[0][1]
|
81 |
+
score = (xgb_pred + rf_pred) / 2
|
82 |
+
|
83 |
+
recommended_products = filter_products(tile_type, price_range, preferred_sizes)
|
84 |
+
|
85 |
+
return jsonify({
|
86 |
+
"recommendation_score": round(float(score), 3),
|
87 |
+
"recommended_products": recommended_products[:4],
|
88 |
+
"total_matches": len(recommended_products)
|
89 |
+
})
|
90 |
except Exception as e:
|
91 |
+
print(f"β Error in /recommend: {e}")
|
92 |
+
return jsonify({"error": "Server error"}), 500
|
93 |
+
|
94 |
+
def prepare_features(tile_type, coverage, area, price_range):
|
95 |
+
tile_type_num = 0 if tile_type == "floor" else 1
|
96 |
+
min_price, max_price = price_range
|
97 |
+
price_per_sqft = max_price / coverage if coverage else 0
|
98 |
+
efficiency = coverage / max_price if max_price else 0
|
99 |
+
return np.array([[tile_type_num, area, coverage, min_price, max_price, price_per_sqft, efficiency]])
|
100 |
+
|
101 |
+
def filter_products(tile_type, price_range, preferred_sizes):
|
102 |
+
min_price, max_price = price_range
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
filtered = []
|
104 |
for product in tile_catalog:
|
105 |
+
if product["type"].lower() != tile_type:
|
106 |
+
continue
|
107 |
+
if not (min_price <= product["price"] <= max_price):
|
108 |
+
continue
|
109 |
+
if preferred_sizes and product["size"] not in preferred_sizes:
|
110 |
+
continue
|
111 |
+
|
112 |
+
price_score = 1 - (product["price"] - min_price) / (max_price - min_price + 1e-6)
|
113 |
+
size_score = 1 if not preferred_sizes else (1 if product["size"] in preferred_sizes else 0.5)
|
114 |
+
score = round((price_score + size_score) / 2, 2)
|
115 |
+
filtered.append({**product, "recommendation_score": score})
|
116 |
+
return sorted(filtered, key=lambda x: x["recommendation_score"], reverse=True)
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|