Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,201 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
|
|
|
|
|
|
2 |
import json
|
3 |
import math
|
4 |
-
import
|
5 |
import xgboost as xgb
|
|
|
6 |
|
7 |
-
app = Flask(__name__)
|
|
|
|
|
8 |
|
9 |
-
# Load
|
10 |
try:
|
11 |
-
|
12 |
xgb_model = xgb.Booster()
|
13 |
xgb_model.load_model("xgb_model.json")
|
14 |
-
|
15 |
except Exception as e:
|
16 |
-
|
17 |
-
|
18 |
-
xgb_model = None
|
19 |
|
20 |
-
# Load
|
21 |
-
with open("tile_catalog.json") as f:
|
22 |
tile_catalog = json.load(f)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
area = length * width
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
return jsonify({
|
42 |
-
"
|
43 |
-
"
|
|
|
|
|
|
|
44 |
"tiles_needed": tiles_needed,
|
45 |
-
"boxes_needed": boxes_needed
|
|
|
|
|
46 |
})
|
|
|
47 |
except Exception as e:
|
48 |
-
|
|
|
49 |
|
50 |
-
|
|
|
51 |
def recommend():
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
for product in tile_catalog:
|
61 |
-
if product[
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
})
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_from_directory
|
2 |
+
from flask_cors import CORS
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
import json
|
6 |
import math
|
7 |
+
import os
|
8 |
import xgboost as xgb
|
9 |
+
import logging
|
10 |
|
11 |
+
app = Flask(__name__, static_folder=".", static_url_path="")
|
12 |
+
CORS(app)
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
|
15 |
+
# === Load models ===
|
16 |
try:
|
17 |
+
rf = joblib.load("rf_model.pkl")
|
18 |
xgb_model = xgb.Booster()
|
19 |
xgb_model.load_model("xgb_model.json")
|
20 |
+
app.logger.info("β
Models loaded successfully.")
|
21 |
except Exception as e:
|
22 |
+
app.logger.error(f"β Error loading models: {e}")
|
23 |
+
raise e
|
|
|
24 |
|
25 |
+
# === Load data ===
|
26 |
+
with open("tile_catalog.json", "r", encoding="utf-8") as f:
|
27 |
tile_catalog = json.load(f)
|
28 |
|
29 |
+
with open("tile_sizes.json", "r", encoding="utf-8") as f:
|
30 |
+
tile_sizes = json.load(f)
|
31 |
+
|
32 |
+
# === Serve Frontend ===
|
33 |
+
@app.route('/')
|
34 |
+
def serve_index():
|
35 |
+
return send_from_directory('.', 'index.html')
|
36 |
+
|
37 |
+
@app.route('/<path:path>')
|
38 |
+
def serve_static(path):
|
39 |
+
return send_from_directory('.', path)
|
40 |
+
|
41 |
+
# === Calculate tile requirement ===
|
42 |
+
@app.route('/calculate', methods=['POST'])
|
43 |
+
def calculate():
|
44 |
try:
|
45 |
+
data = request.get_json()
|
46 |
+
required_fields = ['tile_type', 'length', 'width', 'tile_size']
|
47 |
+
for field in required_fields:
|
48 |
+
if field not in data:
|
49 |
+
return jsonify({"error": f"Missing field: {field}"}), 400
|
50 |
+
|
51 |
+
tile_type = data['tile_type'].lower()
|
52 |
+
if tile_type not in ['floor', 'wall']:
|
53 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
54 |
|
55 |
+
tile_size = data['tile_size']
|
56 |
+
if tile_size not in tile_sizes:
|
57 |
+
return jsonify({"error": "Invalid tile size"}), 400
|
58 |
|
59 |
+
# Validate and compute area
|
60 |
+
length = float(data['length'])
|
61 |
+
width = float(data['width'])
|
62 |
+
validate_positive_number(length, "length")
|
63 |
+
validate_positive_number(width, "width")
|
64 |
area = length * width
|
65 |
+
validate_positive_number(area, "area")
|
66 |
+
|
67 |
+
# Calculate tile needs
|
68 |
+
tile_info = tile_sizes[tile_size]
|
69 |
+
area_per_tile = tile_info['length'] * tile_info['width']
|
70 |
+
tiles_needed = math.ceil((area / area_per_tile) * 1.1)
|
71 |
+
tiles_per_box = tile_info.get('tiles_per_box', 10)
|
72 |
+
boxes_needed = math.ceil(tiles_needed / tiles_per_box)
|
73 |
+
|
74 |
+
# Find matching products
|
75 |
+
matching_products = [
|
76 |
+
{
|
77 |
+
**p,
|
78 |
+
"link": p.get("url", "#")
|
79 |
+
}
|
80 |
+
for p in tile_catalog
|
81 |
+
if p['type'].lower() == tile_type and p['size'] == tile_size
|
82 |
+
]
|
83 |
|
84 |
return jsonify({
|
85 |
+
"tile_type": tile_type,
|
86 |
+
"tile_size": tile_size,
|
87 |
+
"length": round(length, 2),
|
88 |
+
"width": round(width, 2),
|
89 |
+
"area": round(area, 2),
|
90 |
"tiles_needed": tiles_needed,
|
91 |
+
"boxes_needed": boxes_needed,
|
92 |
+
"matching_products": matching_products[:5],
|
93 |
+
"total_matches": len(matching_products)
|
94 |
})
|
95 |
+
|
96 |
except Exception as e:
|
97 |
+
app.logger.error(f"Error in /calculate: {str(e)}")
|
98 |
+
return jsonify({"error": "Internal server error"}), 500
|
99 |
|
100 |
+
# === Recommendation endpoint ===
|
101 |
+
@app.route('/recommend', methods=['POST'])
|
102 |
def recommend():
|
103 |
+
try:
|
104 |
+
data = request.get_json()
|
105 |
+
required_fields = ['tile_type', 'coverage', 'length', 'width', 'price_range']
|
106 |
+
for field in required_fields:
|
107 |
+
if field not in data:
|
108 |
+
return jsonify({"error": f"Missing field: {field}"}), 400
|
109 |
|
110 |
+
tile_type = data['tile_type'].lower()
|
111 |
+
if tile_type not in ['floor', 'wall']:
|
112 |
+
return jsonify({"error": "Invalid tile type"}), 400
|
113 |
|
114 |
+
length = float(data['length'])
|
115 |
+
width = float(data['width'])
|
116 |
+
validate_positive_number(length, "length")
|
117 |
+
validate_positive_number(width, "width")
|
118 |
+
area = length * width
|
119 |
+
validate_positive_number(area, "area")
|
120 |
+
coverage = float(data['coverage'])
|
121 |
+
validate_positive_number(coverage, "coverage")
|
122 |
+
|
123 |
+
if not isinstance(data['price_range'], list) or len(data['price_range']) != 2:
|
124 |
+
return jsonify({"error": "Invalid price range"}), 400
|
125 |
+
|
126 |
+
# Prepare features
|
127 |
+
features = prepare_features({
|
128 |
+
**data,
|
129 |
+
"area": area
|
130 |
+
})
|
131 |
+
|
132 |
+
xgb_pred = xgb_model.predict(xgb.DMatrix(features))[0]
|
133 |
+
rf_pred = rf.predict_proba(features)[0][1]
|
134 |
+
combined_score = (xgb_pred + rf_pred) / 2
|
135 |
+
|
136 |
+
recommended_products = filter_products(
|
137 |
+
tile_type=tile_type,
|
138 |
+
min_price=data['price_range'][0],
|
139 |
+
max_price=data['price_range'][1],
|
140 |
+
preferred_sizes=data.get('preferred_sizes', []),
|
141 |
+
min_score=0.5
|
142 |
+
)
|
143 |
+
|
144 |
+
return jsonify({
|
145 |
+
"recommendation_score": round(float(combined_score), 3),
|
146 |
+
"recommended_products": recommended_products[:5],
|
147 |
+
"calculation": calculate_requirements(area, coverage)
|
148 |
+
})
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
app.logger.error(f"Error in /recommend: {str(e)}")
|
152 |
+
return jsonify({"error": "Internal server error"}), 500
|
153 |
+
|
154 |
+
# === Utility Functions ===
|
155 |
+
def prepare_features(data):
|
156 |
+
tile_type_num = 0 if data['tile_type'] == 'floor' else 1
|
157 |
+
price_per_sqft = data['price_range'][1] / data['coverage']
|
158 |
+
budget_efficiency = data['coverage'] / data['price_range'][1]
|
159 |
+
return np.array([[tile_type_num, data['area'], data['coverage'],
|
160 |
+
data['price_range'][0], data['price_range'][1],
|
161 |
+
price_per_sqft, budget_efficiency]])
|
162 |
+
|
163 |
+
def filter_products(tile_type, min_price, max_price, preferred_sizes, min_score=0.5):
|
164 |
+
filtered = []
|
165 |
for product in tile_catalog:
|
166 |
+
if (product['type'].lower() == tile_type and
|
167 |
+
min_price <= product['price'] <= max_price and
|
168 |
+
(not preferred_sizes or product['size'] in preferred_sizes)):
|
169 |
+
|
170 |
+
price_score = 1 - ((product['price'] - min_price) / (max_price - min_price + 1e-6))
|
171 |
+
size_score = 1 if not preferred_sizes or product['size'] in preferred_sizes else 0.5
|
172 |
+
product_score = (price_score + size_score) / 2
|
173 |
+
|
174 |
+
if product_score >= min_score:
|
175 |
+
filtered.append({
|
176 |
+
**product,
|
177 |
+
"recommendation_score": round(product_score, 2),
|
178 |
+
"link": product.get("url", "#")
|
179 |
})
|
180 |
|
181 |
+
return sorted(filtered, key=lambda x: x['recommendation_score'], reverse=True)
|
182 |
+
|
183 |
+
def calculate_requirements(area, coverage):
|
184 |
+
min_tiles = math.ceil(area / coverage)
|
185 |
+
suggested_tiles = math.ceil(min_tiles * 1.1)
|
186 |
+
return {
|
187 |
+
"minimum_tiles": min_tiles,
|
188 |
+
"suggested_tiles": suggested_tiles,
|
189 |
+
"estimated_cost_range": [
|
190 |
+
round(area * 3, 2),
|
191 |
+
round(area * 10, 2)
|
192 |
+
]
|
193 |
+
}
|
194 |
+
|
195 |
+
def validate_positive_number(value, field):
|
196 |
+
if not isinstance(value, (int, float)) or value <= 0:
|
197 |
+
raise ValueError(f"{field} must be a positive number")
|
198 |
|
199 |
+
# === Run the App ===
|
200 |
+
if __name__ == '__main__':
|
201 |
+
app.run(host='0.0.0.0', port=7860, debug=False)
|